Rumah >pembangunan bahagian belakang >tutorial php >PHP一些简单测试
php-ml是一个使用PHP编写的机器学习库。虽然我们知道,python或者是C++提供了更多机器学习的库,但实际上,他们大多都略显复杂,配置起来让很多新手感到绝望。php-ml这个机器学习库虽然没有特别高大上的算法,但其具有最基本的机器学习、分类等算法,我们的小公司做一些简单的数据分析、预测等等都是够用的。我们的项目中,追求的应该是性价比,而不是过分的效率和精度。一些算法和库看上去非常厉害,但如果我们考虑快速上线,而我们的技术人员没有机器学习方面的经验,那么复杂的代码和配置反而会拖累我们的项目。而如果我们本身就是做一个简单的机器学习应用,那么研究复杂库和算法的学习成本很显然高了点,而且,项目出了奇奇怪怪的问题,我们能解决吗?需求改变了怎么办?相信大家都有过这种经历:做着做着,程序忽然报错,自己怎么都搞不清楚原因,上谷歌或百度一搜,只搜出一条满足条件的问题,在五年、十年前提问,然后零回复。。。所以,选择最简单最高效、性价比最高的做法是必须的。php-ml的速度不算慢(赶紧换php7吧),而且精度也不错,毕竟算法都一样,而且php是基于c的。博主最看不惯的就是,拿python和Java,PHP之间比性能,比适用范围。真要性能,请你拿C开发。真要追求适用范围,也请用C,甚至汇编。。。
首先,我们要使用这个库,需要先下载这个库。在github可以下载到这个库文件()。当然,更推荐使用composer来下载该库,自动配置。
当下载好了以后,我们可以看一看这个库的文档,文档都是一些简单的小示例,我们可以自己建一个文件尝试一下。都浅显易懂。接下来,我们来拿实际的数据测试一下。数据集一个是Iris花蕊的数据集,另一个由于记录丢失,所以不知道是有关什么的数据了。。。
Iris花蕊部分数据,有三种不同的分类:
不知名数据集,小数点被打成了逗号,所以计算时还需要处理一下:
我们先处理不知名数据集。首先,我们的不知名数据集的文件名为data.txt。而这个数据集刚好可以先绘制成x-y折线图。所以,我们先将原数据绘制成一个折线图。由于x轴比较长,所以我们只需要看清楚它大致的形状即可:
绘制采用了php的jpgraph库,代码如下:
1 <?php 2 include_once './src/jpgraph.php'; 3 include_once './src/jpgraph_line.php'; 4 5 $g = new Graph(1920,1080);//jpgraph的绘制操作 6 $g->SetScale("textint"); 7 $g->title->Set('data'); 8 9 //文件的处理10 $file = fopen('data.txt','r');11 $labels = array();12 while(!feof($file)){13 $data = explode(' ',fgets($file)); 14 $data[1] = str_replace(',','.',$data[1]);//数据处理,将数据中的逗号修正为小数点15 $labels[(int)$data[0]] = (float)$data[1];//这里将数据以键值的方式存入数组,方便我们根据键来排序16 } 17 18 ksort($labels);//按键的大小排序19 20 $x = array();//x轴的表示数据21 $y = array();//y轴的表示数据22 foreach($labels as $key=>$value){23 array_push($x,$key);24 array_push($y,$value);25 }26 27 28 $linePlot = new LinePlot($y);29 $g->xaxis->SetTickLabels($x); 30 $linePlot->SetLegend('data');31 $g->Add($linePlot);32 $g->Stroke();
在有了这个原图做对比,我们接下来进行学习。我们采用php-ml中的LeastSquars来进行学习。我们测试的输出需要存入文件,方便我们可以画一个对比图。学习代码如下:
1 <?php 2 require 'vendor/autoload.php'; 3 4 use Phpml\Regression\LeastSquares; 5 use Phpml\ModelManager; 6 7 $file = fopen('data.txt','r'); 8 $samples = array(); 9 $labels = array();10 $i = 0;11 while(!feof($file)){12 $data = explode(' ',fgets($file));13 $samples[$i][0] = (int)$data[0];14 $data[1] = str_replace(',','.',$data[1]);15 $labels[$i] = (float)$data[1];16 $i ++;17 } 18 fclose($file);19 20 $regression = new LeastSquares();21 $regression->train($samples,$labels);22 23 //这个a数组是根据我们对原数据处理后的x值给出的,做测试用。24 $a = [0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,29,30,31,37,40,41,45,48,53,55,57,60,61,108,124];25 for($i = 0; $i < count($a); $i ++){26 file_put_contents("putput.txt",($regression->predict([$a[$i]]))."\n",FILE_APPEND); //以追加的方式存入文件 27 }
之后,我们将存入文件的数据读出来,绘制一个图形,先贴最后的效果图:
代码如下:
1 <?php 2 include_once './src/jpgraph.php'; 3 include_once './src/jpgraph_line.php'; 4 5 $g = new Graph(1920,1080); 6 $g->SetScale("textint"); 7 $g->title->Set('data'); 8 9 $file = fopen('putput.txt','r');10 $y = array();11 $i = 0;12 while(!feof($file)){13 $y[$i] = (float)(fgets($file));14 $i ++; 15 } 16 17 $x = [0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,29,30,31,37,40,41,45,48,53,55,57,60,61,108,124];18 19 $linePlot = new LinePlot($y);20 $g->xaxis->SetTickLabels($x); 21 $linePlot->SetLegend('data');22 $g->Add($linePlot);23 $g->Stroke();
可以发现,图形出入还是比较大的,尤其是在图形锯齿比较多的部分。不过,这毕竟是40组数据,我们可以看出,大概的图形趋势是吻合的。一般的库在做这种学习时,数据量低的情况下,准确度都非常低。要达到比较高的精度,需要大量的数据,万条以上的数据量是必要的。如果达不到这个数据要求,那我们使用任何库都是徒劳的。所以,机器学习的实践中,真正难的不在精度低、配置复杂等技术问题,而是数据量不够,或者质量太低(一组数据中无用的数据太多)。在做机器学习之前,对数据的预先处理也是必要的。
接下来,我们来对花蕊数据进行测试。一共三种分类,由于我们下载到的是csv数据,所以我们可以使用php-ml官方提供的操作csv文件的方法。而这里是一个分类问题,所以我们选择库提供的SVC算法来进行分类。我们把花蕊数据的文件名定为Iris.csv,代码如下:
1 <?php 2 require 'vendor/autoload.php'; 3 4 use Phpml\Classification\SVC; 5 use Phpml\SupportVectorMachine\Kernel; 6 use Phpml\Dataset\CsvDataset; 7 8 $dataset = new CsvDataset('Iris.csv' , 4, false); 9 $classifier = new SVC(Kernel::LINEAR,$cost = 1000);10 $classifier->train($dataset->getSamples(),$dataset->getTargets());11 12 echo $classifier->predict([$argv[1],$argv[2],$argv[3],$argv[4]]);//$argv是命令行参数,调试这种程序使用命令行较方便
是不是很简单?短短12行代码就搞定了。接下来,我们来测试一下。根据我们上面贴出的图,当我们输入5 3.3 1.4 0.2的时候,输出应该是Iris-setosa。我们看一下:
看,至少我们输入一个原来就有的数据,得到了正确的结果。但是,我们输入原数据集中没有的数据呢?我们来测试两组:
由我们之前贴出的两张图的数据看,我们输入的数据在数据集中并不存在,但分类按照我们初步的观察来看,是合理的。
所以,这个机器学习库对于大多数的人来说,都是够用的。而大多数鄙视这个库鄙视那个库,大谈性能的人,基本上也不是什么大牛。真正的大牛已经忙着捞钱去了,或者正在做学术研究等等。我们更多的应该是掌握算法,了解其中的道理和玄机,而不是夸夸其谈。当然,这个库并不建议用在大型项目上,只推荐小型项目或者个人项目等。
Atas ialah kandungan terperinci PHP一些简单测试. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!