闭包(closure)是函数式编程的重要的语法结构。闭包也是一种组织代码的结构,它同样提高了代码的可重复使用性。
如果在一个内嵌函数里,对在外部函数内(但不是在全局作用域)的变量进行引用,那么内嵌函数就被认为是闭包(closure)。
定义在外部函数内但由内部函数引用或者使用的变量称为自由变量。
总结一下,创建一个闭包必须满足以下几点:
1. 必须有一个内嵌函数
2. 内嵌函数必须引用外部函数中的变量
3. 外部函数的返回值必须是内嵌函数
1.闭包使用示例
先看一个闭包的例子:
In [10]: def func(name): ...: def in_func(age): ...: print 'name:',name,'age:',age ...: return in_func ...: In [11]: demo = func('feiyu')In [12]: demo(19) name: feiyu age: 19
这里当调用 func
的时候就产生了一个闭包——in_func
,并且该闭包持有自由变量——name
,因此这也意味着,当函数func
的生命周期结束之后,name
这个变量依然存在,因为它被闭包引用了,所以不会被回收。
在 python
的函数内,可以直接引用外部变量,但不能改写外部变量,因此如果在闭包中直接改写父函数的变量,就会发生错误。看以下示例:
实现一个计数闭包的例子:
def counter(start=0):count = [start] def incr():count[0] += 1return countreturn incr a = counter() print 'a:',aIn [32]: def counter(start=0): ...: count = start ...: def incr(): ...: count += 1 ...: return count ...: return incr ...: In [33]: a = counter()In [35]: a() #此处会报错 UnboundLocalError: local variable 'count' referenced before assignment
应该像下面这样使用:
In [36]: def counter(start=0): ...: count = [start] ...: def incr(): ...: count[0] += 1 ...: return count ...: return incr ...: In [37]: count = counter(5) In [38]: for i in range(10): ...: print count(), ...: [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
2.使用闭包的陷阱
In [1]: def create(): ...: return [lambda x:i*x for i in range(5)] #推导式生成一个匿名函数的列表 ...: In [2]: create()Out[2]: [<function __main__.<lambda>>, <function __main__.<lambda>>, <function __main__.<lambda>>, <function __main__.<lambda>>, <function __main__.<lambda>>]In [4]: for mul in create(): ...: print mul(2) ...: 88888
结果是不是很奇怪,这算是闭包使用中的一个陷阱吧!来看看为什么?
在上面的代码当中,函数create
返回一个list
里面保存了4个函数变量,这4个函数都共同的引用了循环变量i
, 也就是说它们共享着同一个变量i
,i
是会改变的,当函数调用时,循环变量i
已经是等于4了,因此4个函数返回的都是8。如果,需要在闭包使用循环变量的值的话,把循环变量作为闭包的默认参数或者是通过偏函数来实现。实现的原理也很简单,就是当把循环变量当参数传入函数时,会申请新的内存。示例代码如下:
In [5]: def create(): ...: return [lambda x,i=i:i*x for i in range(5)] ...: In [7]: for mul in create(): ...: print mul(2) ...: 02468
3,闭包与装饰器
装饰器就是一种的闭包的应用,只不过其传递的是函数:
def addb(func):def wrapper():return '<b>' + func() + '</b>'return wrapperdef addli(func):def wrapper():return '<li>' + func() + '</li>'return wrapper @addb # 等同于 demo = addb(addli(demo)) @addli # 等同于 demo = addli(demo)def demo():return 'hello world' print demo() # 执行的是 addb(addku(demo))
在执行时,首先将demo
函数传递给addli
进行装饰,然后将装饰后的函数传递给addb
进行装饰。所以最后返回的结果是:
<b><li>hello world</li></b>
4.装饰器中的陷阱
当你写了一个装饰器作用在某个函数上,这个函数的重要的元信息比如名字、文档字符串、注解和参数签名都会丢失。
def out_func(func):def wrapper(): func()return wrapper@out_funcdef demo():""" this is a demo. """print 'hello world.'if __name__ == '__main__': demo()print "__name__:",demo.__name__print "__doc__:",demo.__doc__
看结果:
hello world.__name__: wrapper__doc__: None
函数名字和文档字符串都变成了闭包的信息。好在可以使用 functools
库中的 @wraps
装饰器来注解底层包装函数。
from functools import wrapsdef out_func(func): @wraps(func)def wrapper(): func()return wrapper
自己试试结果吧!
Atas ialah kandungan terperinci Pytho 中闭包与装饰器详解. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.

Python sesuai untuk pembangunan pesat dan pemprosesan data, manakala C sesuai untuk prestasi tinggi dan kawalan asas. 1) Python mudah digunakan, dengan sintaks ringkas, dan sesuai untuk sains data dan pembangunan web. 2) C mempunyai prestasi tinggi dan kawalan yang tepat, dan sering digunakan dalam pengaturcaraan permainan dan sistem.

Masa yang diperlukan untuk belajar python berbeza dari orang ke orang, terutamanya dipengaruhi oleh pengalaman pengaturcaraan sebelumnya, motivasi pembelajaran, sumber pembelajaran dan kaedah, dan irama pembelajaran. Tetapkan matlamat pembelajaran yang realistik dan pelajari terbaik melalui projek praktikal.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

Dreamweaver CS6
Alat pembangunan web visual

Dreamweaver Mac版
Alat pembangunan web visual