JSON 函数
使用 JSON 函数需要导入 json 库:import json。
函数 描述
json.dumps 将 Python 对象编码成 JSON 字符串
json.loads 将已编码的 JSON 字符串解码为 Python 对象
json.dumps
语法
json.dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, encoding="utf-8", default=None, sort_keys=False, **kw)
实例
以下实例将数组编码为 JSON 格式数据:
#!/usr/bin/python import json data = {'number': 6, 'name': 'Pythontab'} jsonData = json.dumps(data) print jsonData
以上代码执行结果为:
{"number": 6, "name": "Pythontab"}
注意: 大家可能发现,执行上述转换以后,数据并没有发生变化,这里要说一下: 在json中双引号才是标注的字符串分割符号,单引号不标准。
使用参数让 JSON 数据排序并格式化输出:
#!/usr/bin/python import json data = {'number': 6, 'name': 'Pythontab'} jsonData = json.dumps(data, sort_keys=True, indent=4, separators=(',', ': ')) print jsonData
输出结果
{ "name": "Pythontab", "number": 6 }
python 原始类型向 json 类型的转化对照表:
Python | JSON |
---|---|
dict | object |
list, tuple | array |
str, unicode | string |
int, long, float | number |
True | true |
False | false |
None | null |
json.loads
json.loads 用于解码 JSON 数据。该函数返回 Python 字段的数据类型。
语法
json.loads(s[, encoding[, cls[, object_hook[, parse_float[, parse_int[, parse_constant[, object_pairs_hook[, **kw]]]]]]]])
实例
以下实例展示了Python 如何解码 JSON 对象:
#!/usr/bin/python import json jsonData = '{"number": 6, "name": "Pythontab"}' str = json.loads(jsonData) print str
以上代码执行结果为:
{u'number': 6, u'name': u'Pythontab'}
json 类型转换到 python 的类型对照表:
JSON | Python |
---|---|
object | dict |
array | list |
string | unicode |
number (int) | int, long |
number (real) | float |
true | True |
false | False |
null | None |
使用第三方库:Demjson
Demjson 是 python 的第三方模块库,可用于编码和解码 JSON 数据,包含了 JSONLint 的格式化及校验功能。
Github 地址:https://github.com/dmeranda/demjson
环境配置
在使用 Demjson 编码或解码 JSON 数据前,我们需要先安装 Demjson 模块。
方法1:源码安装
$ tar -xvzf demjson-2.2.4.tar.gz
$ cd demjson-2.2.4
$ python setup.py install
方法2:直接使用pip安装
pip install Demjson
JSON 函数
函数 描述
encode 将 Python 对象编码成 JSON 字符串
decode 可以使用 demjson.decode() 函数解码 JSON 数据。该函数返回 Python 字段的数据类型。
encode语法
demjson.encode(self, obj, nest_level=0)
decode语法
demjson.decode(self, txt)
使用都非常简单,我就不在这里举例啦~~
Atas ialah kandungan terperinci 有关Python解析JSON的内容详解. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Aplikasi dunia sebenar Python termasuk analisis data, pembangunan web, kecerdasan buatan dan automasi. 1) Dalam analisis data, Python menggunakan panda dan matplotlib untuk memproses dan memvisualisasikan data. 2) Dalam pembangunan web, kerangka Django dan Flask memudahkan penciptaan aplikasi web. 3) Dalam bidang kecerdasan buatan, tensorflow dan pytorch digunakan untuk membina dan melatih model. 4) Dari segi automasi, skrip python boleh digunakan untuk tugas -tugas seperti menyalin fail.

Python digunakan secara meluas dalam bidang sains data, pembangunan web dan bidang skrip automasi. 1) Dalam sains data, Python memudahkan pemprosesan dan analisis data melalui perpustakaan seperti numpy dan panda. 2) Dalam pembangunan web, rangka kerja Django dan Flask membolehkan pemaju dengan cepat membina aplikasi. 3) Dalam skrip automatik, kesederhanaan Python dan perpustakaan standard menjadikannya ideal.

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Dreamweaver Mac版
Alat pembangunan web visual

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna