这篇文章主要介绍了Python 中迭代器与生成器实例详解的相关资料,需要的朋友可以参考下
Python 中迭代器与生成器实例详解
本文通过针对不同应用场景及其解决方案的方式,总结了Python中迭代器与生成器的一些相关知识,具体如下:
1.手动遍历迭代器
应用场景:想遍历一个可迭代对象中的所有元素,但是不想用for循环
解决方案:使用next()函数,并捕获StopIteration异常
def manual_iter(): with open('/etc/passwd') as f: try: while True: line=next(f) if line is None: break print(line,end='') except StopIteration: pass
#test case items=[1,2,3] it=iter(items) next(it) next(it) next(it)
2.代理迭代
应用场景:想直接在一个包含有列表、元组或其他可迭代对象的容器对象上执行迭代操作
解决方案:定义一个iter()方法,将迭代操作代理到容器内部的对象上
示例:
class Node: def init(self,value): self._value=value self._children=[] def repr(self): return 'Node({!r})'.fromat(self._value) def add_child(self,node): self._children.append(node) def iter(self): #将迭代请求传递给内部的_children属性 return iter(self._children)
#test case if name='main': root=Node(0) child1=Node(1) child2=Nide(2) root.add_child(child1) root.add_child(child2) for ch in root: print(ch)
3.反向迭代
应用场景:想要反向迭代一个序列
解决方案:使用内置的reversed()函数或者在自定义类上实现reversed()
示例1
a=[1,2,3,4] for x in reversed(a): print(x) #4 3 2 1 f=open('somefile') for line in reversed(list(f)): print(line,end='') #test case for rr in reversed(Countdown(30)): print(rr) for rr in Countdown(30): print(rr)
示例2
class Countdown: def init(self,start): self.start=start #常规迭代 def iter(self): n=self.start while n > 0: yield n n -= 1 #反向迭代 def reversed(self): n=1 while n <= self.start: yield n n +=1
4.有选择的迭代
应用场景:想遍历一个可迭代对象,但是对它开始的某些元素并不感兴趣,想跳过
解决方案:使用itertools.dropwhile()
示例1
with open('/etc/passwd') as f: for line in f: print(line,end='')
示例2
from itertools import dropwhile with open('/etc/passwd') as f: for line in dropwhile(lambda line:line.startwith('#'),f): print(line,end='')
5.同时迭代多个序列
应用场景:想同时迭代多个序列每次分别从一个序列中取一个元素
解决方案:使用zip()函数
6.不同集合上元素的迭代
应用场景:想在多个对象执行相同的操作,但是这些对象在不同的容器中
解决方案:使用itertool.chain()函数
7.展开嵌套的序列
应用场景:想将一个多层嵌套的序列展开成一个单层列表
解决方案:使用包含yield from语句的递归生成器
示例
from collections import Iterable def flatten(items,ignore_types=(str,bytes)): for x in items: if isinstance(x,Iterable) and not isinstance(x,ignore_types): yield from flatten(x) else: yield x
#test case items=[1,2,[3,4,[5,6],7],8] for x in flatten(items): print(x)
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
Atas ialah kandungan terperinci 详解Python中迭代器与生成器实例方法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)