下面小编就为大家带来一篇使用Python写CUDA程序的方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
使用Python写CUDA程序有两种方式:
* Numba
* PyCUDA
numbapro现在已经不推荐使用了,功能被拆分并分别被集成到accelerate和Numba了。
例子
numba
Numba通过及时编译机制(JIT)优化Python代码,Numba可以针对本机的硬件环境进行优化,同时支持CPU和GPU的优化,并且可以和Numpy集成,使Python代码可以在GPU上运行,只需在函数上方加上相关的指令标记,
如下所示:
import numpy as np from timeit import default_timer as timer from numba import vectorize @vectorize(["float32(float32, float32)"], target='cuda') def vectorAdd(a, b): return a + b def main(): N = 320000000 A = np.ones(N, dtype=np.float32 ) B = np.ones(N, dtype=np.float32 ) C = np.zeros(N, dtype=np.float32 ) start = timer() C = vectorAdd(A, B) vectorAdd_time = timer() - start print("c[:5] = " + str(C[:5])) print("c[-5:] = " + str(C[-5:])) print("vectorAdd took %f seconds " % vectorAdd_time) if name == 'main': main()
PyCUDA
PyCUDA的内核函数(kernel)其实就是使用C/C++编写的,通过动态编译为GPU微码,Python代码与GPU代码进行交互,如下所示:
import pycuda.autoinit import pycuda.driver as drv import numpy as np from timeit import default_timer as timer from pycuda.compiler import SourceModule mod = SourceModule(""" global void func(float *a, float *b, size_t N) { const int i = blockIdx.x * blockDim.x + threadIdx.x; if (i >= N) { return; } float temp_a = a[i]; float temp_b = b[i]; a[i] = (temp_a * 10 + 2 ) * ((temp_b + 2) * 10 - 5 ) * 5; // a[i] = a[i] + b[i]; } """) func = mod.get_function("func") def test(N): # N = 1024 * 1024 * 90 # float: 4M = 1024 * 1024 print("N = %d" % N) N = np.int32(N) a = np.random.randn(N).astype(np.float32) b = np.random.randn(N).astype(np.float32) # copy a to aa aa = np.empty_like(a) aa[:] = a # GPU run nTheads = 256 nBlocks = int( ( N + nTheads - 1 ) / nTheads ) start = timer() func( drv.InOut(a), drv.In(b), N, block=( nTheads, 1, 1 ), grid=( nBlocks, 1 ) ) run_time = timer() - start print("gpu run time %f seconds " % run_time) # cpu run start = timer() aa = (aa * 10 + 2 ) * ((b + 2) * 10 - 5 ) * 5 run_time = timer() - start print("cpu run time %f seconds " % run_time) # check result r = a - aa print( min(r), max(r) ) def main(): for n in range(1, 10): N = 1024 * 1024 * (n * 10) print("------------%d---------------" % n) test(N) if name == 'main': main()
对比
numba使用一些指令标记某些函数进行加速(也可以使用Python编写内核函数),这一点类似于OpenACC,而PyCUDA需要自己写kernel,在运行时进行编译,底层是基于C/C++实现的。通过测试,这两种方式的加速比基本差不多。但是,numba更像是一个黑盒,不知道内部到底做了什么,而PyCUDA就显得很直观。因此,这两种方式具有不同的应用:
* 如果只是为了加速自己的算法而不关心CUDA编程,那么直接使用numba会更好。
* 如果为了学习、研究CUDA编程或者实验某一个算法在CUDA下的可行性,那么使用PyCUDA。
* 如果写的程序将来要移植到C/C++,那么就一定要使用PyCUDA了,因为使用PyCUDA写的kernel本身就是用CUDA C/C++写的。
Atas ialah kandungan terperinci 使用Python写CUDA程序的方法详细介绍. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

PythonArraysSupportVariousoperations: 1) SlicingExtractsSubsets, 2) Menambah/ExtendingAddSelements, 3) InsertingPlaceSelementSatSatSatSpecifics, 4) RemovingDeleteselements, 5) Sorting/ReversingChangesOrder,

NumpyarraysareessentialforapplicationRequiringeficientnumericalcomputationsanddatamanipulation.theyarecrucialindaSascience, machinelearning, fizik, kejuruteraan, danfinanceduetotheirabilitytOHandlelarge-Scaledataefisien.Forexample, infinancialanal

UseanArray.arrayoveralistinpythonwhendealingwithhomogeneousdata, criticalcode prestasi, orinterfacingwithccode.1) homogeneousdata: arrayssavemememorywithtypedelements.2)

Tidak, notalllistoperationsaresuportedByArrays, andviceversa.1) arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing, whyimpactsperformance.2) listsdonotguaranteeconstantTimeComplexityFordirectacesscesscesscesscesscesscesscesscesscesessd.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)
