这篇文章主要介绍了java生成缩略图的方法,结合具体实例形式分析了java生成缩略图过程中所涉及的各种常见的图形处理技巧,需要的朋友可以参考下
本文实例讲述了java生成缩略图的方法。分享给大家供大家参考,具体如下:
package com.util; import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException; import javax.imageio.ImageIO; /** * 生成压缩图 * */ public class ImageScale { private int width; private int height; private int scaleWidth; double support = (double) 3.0; double PI = (double) 3.14159265358978; double[] contrib; double[] normContrib; double[] tmpContrib; int startContrib, stopContrib; int nDots; int nHalfDots; /** * Start: Use Lanczos filter to replace the original algorithm for image * scaling. Lanczos improves quality of the scaled image modify by :blade */ public BufferedImage imageZoomOut(BufferedImage srcBufferImage, int w, int h) { width = srcBufferImage.getWidth(); height = srcBufferImage.getHeight(); scaleWidth = w; if (DetermineResultSize(w, h) == 1) { return srcBufferImage; } CalContrib(); BufferedImage pbOut = HorizontalFiltering(srcBufferImage, w); BufferedImage pbFinalOut = VerticalFiltering(pbOut, h); return pbFinalOut; } /** * 决定图像尺寸 */ private int DetermineResultSize(int w, int h) { double scaleH, scaleV; // update by libra double wt = w > width ? width : w; double ht = h > height ? height : h; scaleH = (double) wt / (double) width; scaleV = (double) ht / (double) height; // 需要判断一下scaleH,scaleV,不做放大操作 if (scaleH >= 1.0 && scaleV >= 1.0) { return 1; } return 0; } // end of DetermineResultSize() private double Lanczos(int i, int inWidth, int outWidth, double Support) { double x; x = (double) i * (double) outWidth / (double) inWidth; return Math.sin(x * PI) / (x * PI) * Math.sin(x * PI / Support) / (x * PI / Support); } // end of Lanczos() // // Assumption: same horizontal and vertical scaling factor // private void CalContrib() { nHalfDots = (int) ((double) width * support / (double) scaleWidth); nDots = nHalfDots * 2 + 1; try { contrib = new double[nDots]; normContrib = new double[nDots]; tmpContrib = new double[nDots]; } catch (Exception e) { System.out.println("init contrib,normContrib,tmpContrib" + e); } int center = nHalfDots; contrib[center] = 1.0; double weight = 0.0; int i = 0; for (i = 1; i <= center; i++) { contrib[center + i] = Lanczos(i, width, scaleWidth, support); weight += contrib[center + i]; } for (i = center - 1; i >= 0; i--) { contrib[i] = contrib[center * 2 - i]; } weight = weight * 2 + 1.0; for (i = 0; i <= center; i++) { normContrib[i] = contrib[i] / weight; } for (i = center + 1; i < nDots; i++) { normContrib[i] = normContrib[center * 2 - i]; } } // end of CalContrib() // 处理边缘 private void CalTempContrib(int start, int stop) { double weight = 0; int i = 0; for (i = start; i <= stop; i++) { weight += contrib[i]; } for (i = start; i <= stop; i++) { tmpContrib[i] = contrib[i] / weight; } } // end of CalTempContrib() private int GetRedValue(int rgbValue) { int temp = rgbValue & 0x00ff0000; return temp >> 16; } private int GetGreenValue(int rgbValue) { int temp = rgbValue & 0x0000ff00; return temp >> 8; } private int GetBlueValue(int rgbValue) { return rgbValue & 0x000000ff; } private int ComRGB(int redValue, int greenValue, int blueValue) { return (redValue << 16) + (greenValue << 8) + blueValue; } // 行水平滤波 private int HorizontalFilter(BufferedImage bufImg, int startX, int stopX, int start, int stop, int y, double[] pContrib) { double valueRed = 0.0; double valueGreen = 0.0; double valueBlue = 0.0; int valueRGB = 0; int i, j; for (i = startX, j = start; i <= stopX; i++, j++) { valueRGB = bufImg.getRGB(i, y); valueRed += GetRedValue(valueRGB) * pContrib[j]; valueGreen += GetGreenValue(valueRGB) * pContrib[j]; valueBlue += GetBlueValue(valueRGB) * pContrib[j]; } valueRGB = ComRGB(Clip((int) valueRed), Clip((int) valueGreen), Clip((int) valueBlue)); return valueRGB; } // end of HorizontalFilter() // 图片水平滤波 private BufferedImage HorizontalFiltering(BufferedImage bufImage, int iOutW) { int dwInW = bufImage.getWidth(); int dwInH = bufImage.getHeight(); int value = 0; BufferedImage pbOut = new BufferedImage(iOutW, dwInH, BufferedImage.TYPE_INT_RGB); for (int x = 0; x < iOutW; x++) { int startX; int start; int X = (int) (((double) x) * ((double) dwInW) / ((double) iOutW) + 0.5); int y = 0; startX = X - nHalfDots; if (startX < 0) { startX = 0; start = nHalfDots - X; } else { start = 0; } int stop; int stopX = X + nHalfDots; if (stopX > (dwInW - 1)) { stopX = dwInW - 1; stop = nHalfDots + (dwInW - 1 - X); } else { stop = nHalfDots * 2; } if (start > 0 || stop < nDots - 1) { CalTempContrib(start, stop); for (y = 0; y < dwInH; y++) { value = HorizontalFilter(bufImage, startX, stopX, start, stop, y, tmpContrib); pbOut.setRGB(x, y, value); } } else { for (y = 0; y < dwInH; y++) { value = HorizontalFilter(bufImage, startX, stopX, start, stop, y, normContrib); pbOut.setRGB(x, y, value); } } } return pbOut; } // end of HorizontalFiltering() private int VerticalFilter(BufferedImage pbInImage, int startY, int stopY, int start, int stop, int x, double[] pContrib) { double valueRed = 0.0; double valueGreen = 0.0; double valueBlue = 0.0; int valueRGB = 0; int i, j; for (i = startY, j = start; i <= stopY; i++, j++) { valueRGB = pbInImage.getRGB(x, i); valueRed += GetRedValue(valueRGB) * pContrib[j]; valueGreen += GetGreenValue(valueRGB) * pContrib[j]; valueBlue += GetBlueValue(valueRGB) * pContrib[j]; // System.out.println(valueRed+"->"+Clip((int)valueRed)+"<-"); // // System.out.println(valueGreen+"->"+Clip((int)valueGreen)+"<-"); // System.out.println(valueBlue+"->"+Clip((int)valueBlue)+"<-"+"-->"); } valueRGB = ComRGB(Clip((int) valueRed), Clip((int) valueGreen), Clip((int) valueBlue)); // System.out.println(valueRGB); return valueRGB; } // end of VerticalFilter() private BufferedImage VerticalFiltering(BufferedImage pbImage, int iOutH) { int iW = pbImage.getWidth(); int iH = pbImage.getHeight(); int value = 0; BufferedImage pbOut = new BufferedImage(iW, iOutH, BufferedImage.TYPE_INT_RGB); for (int y = 0; y < iOutH; y++) { int startY; int start; int Y = (int) (((double) y) * ((double) iH) / ((double) iOutH) + 0.5); startY = Y - nHalfDots; if (startY < 0) { startY = 0; start = nHalfDots - Y; } else { start = 0; } int stop; int stopY = Y + nHalfDots; if (stopY > (int) (iH - 1)) { stopY = iH - 1; stop = nHalfDots + (iH - 1 - Y); } else { stop = nHalfDots * 2; } if (start > 0 || stop < nDots - 1) { CalTempContrib(start, stop); for (int x = 0; x < iW; x++) { value = VerticalFilter(pbImage, startY, stopY, start, stop, x, tmpContrib); pbOut.setRGB(x, y, value); } } else { for (int x = 0; x < iW; x++) { value = VerticalFilter(pbImage, startY, stopY, start, stop, x, normContrib); pbOut.setRGB(x, y, value); } } } return pbOut; } // end of VerticalFiltering() int Clip(int x) { if (x < 0) return 0; if (x > 255) return 255; return x; } /** * End: Use Lanczos filter to replace the original algorithm for image * scaling. Lanczos improves quality of the scaled image modify by :blade */ public boolean scale(String source, String target, int width, int height) { File f = new File(source); try { BufferedImage bi = ImageIO.read(f); BufferedImage out = null; ImageScale scal = new ImageScale(); int _width = bi.getWidth();// add int _height = bi.getHeight();// add int[] _arr = this.getImageWidthAndHeight(_width, _height, width, height);// add // out = scal.imageZoomOut(bi, width, height); out = scal.imageZoomOut(bi, _arr[0], _arr[1]); File t = new File(target); ImageIO.write(out, "jpg", t); return true; } catch (IOException e) { e.printStackTrace(); return false; } } /** * 得到放大或者缩小后的比例 * * @param W * 图片原宽 * @param H * 原高 * @param tarW * 转换后的宽 * @param zoom * 放大还是缩小 * @return 返回宽和高的数组 */ private static int[] getImageWidthAndHeight(int orgW, int orgH, int avW, int avH) { int width = 0; int height = 0; if (orgW > 0 && orgH > 0) { if (orgW / orgH >= avW / avH) { if (orgW > avW) { width = avW; height = (orgH * avW) / orgW; } else { width = orgW; height = orgH; } System.out.println("++Widht:" + width + " Height" + height); } else { if (orgH > avH) { height = avH; width = (orgW * avH) / orgH; } else { width = orgW; height = orgH; } System.out.println("++Widht:" + width + " Height" + height); } } int[] arr = new int[2]; arr[0] = width; arr[1] = height; // long start = System.currentTimeMillis(); // int width = 0; // int height = 0; // if ((W / tarW) >= (H / tarH)) {// 宽的缩小比例大于高的 // width = tarW; // height = H * tarW / W; // System.out.println(width + " " + height); // } else { // height = tarH; // width = W * tarH / H; // System.out.println(width + " " + height); // } // int[] arr = new int[2]; // arr[0] = width; // arr[1] = height; // long end = System.currentTimeMillis(); // System.out.println("宽高处理:" + (end - start)); return arr; } public void picscale(String source, String target, int w, int h) { File f = new File(source); int width = 0; int height = 0; try { BufferedImage bi = ImageIO.read(f); int[] arr = getImageWidthAndHeight(bi.getWidth(), bi.getHeight(), w, h); width = arr[0]; height = arr[1]; BufferedImage out = null; ImageScale scal = new ImageScale(); out = scal.imageZoomOut(bi, width, height); File t = new File(target); ImageIO.write(out, "jpg", t); } catch (IOException e) { e.printStackTrace(); } } /** * *调用scale(源文件路径,保存路径,最大宽,最大高) * * */ public static void main(String[] args) { ImageScale is = new ImageScale(); long start = System.currentTimeMillis(); is.scale("D:/nie.jpg", "D:/t6.jpg", 250, 194); long end = System.currentTimeMillis(); System.out.println("时间:" + (end - start)); } }
Atas ialah kandungan terperinci 具体介绍java生成缩略图的方法示例代码. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Artikel ini membincangkan menggunakan Maven dan Gradle untuk Pengurusan Projek Java, membina automasi, dan resolusi pergantungan, membandingkan pendekatan dan strategi pengoptimuman mereka.

Artikel ini membincangkan membuat dan menggunakan perpustakaan Java tersuai (fail balang) dengan pengurusan versi dan pergantungan yang betul, menggunakan alat seperti Maven dan Gradle.

Artikel ini membincangkan pelaksanaan caching pelbagai peringkat di Java menggunakan kafein dan cache jambu untuk meningkatkan prestasi aplikasi. Ia meliputi persediaan, integrasi, dan faedah prestasi, bersama -sama dengan Pengurusan Dasar Konfigurasi dan Pengusiran PRA Terbaik

Artikel ini membincangkan menggunakan JPA untuk pemetaan objek-relasi dengan ciri-ciri canggih seperti caching dan pemuatan malas. Ia meliputi persediaan, pemetaan entiti, dan amalan terbaik untuk mengoptimumkan prestasi sambil menonjolkan potensi perangkap. [159 aksara]

Kelas kelas Java melibatkan pemuatan, menghubungkan, dan memulakan kelas menggunakan sistem hierarki dengan bootstrap, lanjutan, dan pemuat kelas aplikasi. Model delegasi induk memastikan kelas teras dimuatkan dahulu, yang mempengaruhi LOA kelas tersuai


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa