cari
Rumahpembangunan bahagian belakangTutorial Python详解Python爬取网页中的搜狗图片方法

没想到python是如此强大,令人着迷,以前看见图片总是一张一张复制粘贴,现在好了,学会python就可以用程序将一张张图片,保存下来。下面这篇文章主要给大家介绍了利用Python3.6爬取搜狗图片网页中图片的相关资料,需要的朋友可以参考下。

前言

最近几天,研究了一下一直很好奇的爬虫算法。这里写一下最近几天的点点心得。下面进入正文:

我们这里以sogou作为爬取的对象。

首先我们进入搜狗图片,进入壁纸分类(当然只是个例子Q_Q),因为如果需要爬取某网站资料,那么就要初步的了解它…

详解Python爬取网页中的搜狗图片方法

进去后就是这个啦,然后F12进入开发人员选项,笔者用的是Chrome。

右键图片>>检查   

详解Python爬取网页中的搜狗图片方法

发现我们需要的图片src是在img标签下的,于是先试着用 Python 的 requests提取该组件,进而获取img的src然后使用 urllib.request.urlretrieve逐个下载图片,从而达到批量获取资料的目的,思路好了,下面应该告诉程序要爬取的url为http://pic.sogou.com/pics/recommend?category=%B1%DA%D6%BD,此url来自进入分类后的地址栏。明白了url地址我们来开始愉快的代码时间吧:

在写这段爬虫程序的时候,最好要逐步调试,确保我们的每一步操作正确,这也是程序猿应该有的好习惯。笔者不知道自己算不算个程序猿哈。线面我们来剖析该url指向的网页。

import requests
import urllib
from bs4 import BeautifulSoup
res = requests.get('http://pic.sogou.com/pics/recommend?category=%B1%DA%D6%BD')
soup = BeautifulSoup(res.text,'html.parser')
print(soup.select('img'))

output:

详解Python爬取网页中的搜狗图片方法

发现输出内容并不包含我们要的图片元素,而是只剖析到logo的img,这显然不是我们想要的。也就是说需要的图片资料不在url  即 http://pic.sogou.com/pics/recommend?category=%B1%DA%D6%BD里面。因此考虑可能该元素是动态的,细心的同学可能会发现,当在网页内,向下滑动鼠标滚轮,图片是动态刷新出来的,也就是说,该网页并不是一次加载出全部资源,而是动态加载资源。这也避免了因为网页过于臃肿,而影响加载速度。下面痛苦的探索开始了,我们是要找到所有图片的真正的url 笔者也是刚刚接触,找这个不是太有经验。最后找的位置F12>>Network>>XHR>>(点击XHR下的文件)>>Preview。

详解Python爬取网页中的搜狗图片方法

发现,有点接近我们需要的元素了,点开all_items 发现下面是0 1 2 3...一个一个的貌似是图片元素。试着打开一个url。发现真的是图片的地址。找到目标之后。点击XHR下的Headers

得到第二行

Request URL:

http://pic.sogou.com/pics/channel/getAllRecomPicByTag.jsp?category=%E5%A3%81%E7%BA%B8&tag=%E5%85%A8%E9%83%A8&start=0&len=15&width=1536&height=864,试着去掉一些不必要的部分,技巧就是,删掉可能的部分之后,访问不受影响。经笔者筛选。最后得到的url:http://pic.sogou.com/pics/channel/getAllRecomPicByTag.jsp?category=%E5%A3%81%E7%BA%B8&tag=%E5%85%A8%E9%83%A8&start=0&len=15  字面意思,知道category后面可能为分类。start为开始下标,len为长度,也即图片的数量。好了,开始愉快的代码时间吧:

开发环境为Win7  Python 3.6,运行的时候Python需要安装requests,

Python3.6 安装requests 应该CMD敲入:

pip install requests

笔者在这里也是边调试边写,这里把最终的代码贴出来:

import requests
import json
import urllib

def getSogouImag(category,length,path):
 n = length
 cate = category
 imgs = requests.get('http://pic.sogou.com/pics/channel/getAllRecomPicByTag.jsp?category='+cate+'&tag=%E5%85%A8%E9%83%A8&start=0&len='+str(n))
 jd = json.loads(imgs.text)
 jd = jd['all_items']
 imgs_url = []
 for j in jd:
  imgs_url.append(j['bthumbUrl'])
 m = 0
 for img_url in imgs_url:
   print('***** '+str(m)+'.jpg *****'+' Downloading...')
   urllib.request.urlretrieve(img_url,path+str(m)+'.jpg')
   m = m + 1
 print('Download complete!')

getSogouImag('壁纸',2000,'d:/download/壁纸/')

程序跑起来的时候,笔者还是有点小激动的。来,感受一下:

详解Python爬取网页中的搜狗图片方法 

详解Python爬取网页中的搜狗图片方法 

至此,关于该爬虫程序的编程过程叙述完毕。整体来看,找到需要爬取元素所在url,是爬虫诸多环节中的关键

Atas ialah kandungan terperinci 详解Python爬取网页中的搜狗图片方法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python vs C: Lengkung pembelajaran dan kemudahan penggunaanPython vs C: Lengkung pembelajaran dan kemudahan penggunaanApr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python vs C: Pengurusan dan Kawalan MemoriPython vs C: Pengurusan dan Kawalan MemoriApr 19, 2025 am 12:17 AM

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Python untuk pengkomputeran saintifik: rupa terperinciPython untuk pengkomputeran saintifik: rupa terperinciApr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python dan C: Mencari alat yang betulPython dan C: Mencari alat yang betulApr 19, 2025 am 12:04 AM

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python untuk sains data dan pembelajaran mesinPython untuk sains data dan pembelajaran mesinApr 19, 2025 am 12:02 AM

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

PhpStorm versi Mac

PhpStorm versi Mac

Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa