cari
Rumahpembangunan bahagian belakangTutorial PythonLinux上使用Python和Flask创建应用的方法

无论你在linux上娱乐还是工作,这对你而言都是一个使用python编程的很好的机会。回到大学我希望他们教我的是Python而不是Java,这学起来很有趣且在实际的应用如yum包管理器中很有用。

本篇教程中我会带你使用python和一个称为flask的微型框架来构建一个简单的应用,来显示诸如每个进程的内存使用,CPU百分比之类有用的信息。

前置需求

Python基础、列表、类、函数、模块。HTML/CSS (基础)。

学习这篇教程你不必是一个python高级开发者

在Linux上安装Python 3

在大多数Linux发行版上Python是默认安装的。下面的你命令可以让你看到安装的版本。

[root@linux-vps ~]# python -V
Python 2.7.5

我们会使用3.x的版本来构建我们的app。根据Python.org所说,现在只对这个版本进行改进,而且不向后兼容Python 2。

注意: 在开始之前,我强烈建议你在虚拟机中尝试这个教程,因为Python是许多Linux发行版的核心组件,任何意外都可能会损坏你的系统。

以下步骤是基于红帽的版本如CentOS(6和7),基于Debian的版本如UbuntuMint和Resbian可以跳过这步,Pythonn 3应该默认已经安装了。如果没有安装,请用apt-get而不是yum来安装下面相应的包。

[leo@linux-vps] yum groupinstall 'Development Tools'
[leo@linux-vps] yum install -y zlib-dev openssl-devel sqlite-devel bzip2-devel
[leo@linux-vps] wget https://www.python.org/ftp/python/3.4.2/Python-3.4.2.tgz
[leo@linux-vps] tar -xvzf Python-3.4.2.tgz
[leo@linux-vps] cd Python-3.4.2
[leo@linux-vps] ./configure
[leo@linux-vps] make
# 推荐使用 make altinstall 以覆盖当前的 python 库
[leo@linux-vps]   make altinstall

成功安装后,你应该可以用下面的命令进入Python3.4的shell了。

[leo@linux-vps]# python3.4
Python 3.4.2 (default, Dec 12 2014, 08:01:15)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> exit ()

使用pip来安装包

Python有它自己的包管理去,与yum和apt-get相似。你将需要它来下载、安装和卸载包。

[leo@linux-vps] pip3.4 install "packagename"    
[leo@linux-vps] pip3.4 list
[leo@linux-vps] pip3.4 uninstall "packagename"

Python虚拟环境

在Python中虚拟环境是一个放置你的项目的依赖环境的目录。这是一个将带有不同的依赖环境的项目隔离的好办法。它可以让你不用sudo命令就能安装包。

[leo@linux-vps] mkdir python3.4-flask
[leo@linux-vps] cd python3.4-flask 
[leo@linux-vps python3.4-flask] pyvenv-3.4 venv

要创建虚拟环境你需要使用“pyvenv-3.4”命令。上述命令会在venv文件夹的内部创建一个名为lib的目录,这里会安装项目所依赖的包。这里同样会创建一个bin文件夹容纳该环境下的pip和python可执行文件。

为我们的Linux系统信息项目激活虚拟环境

[leo@linux-vps python3.4-flask] source venv/bin/activate
 [leo@linux-vps python3.4-flask] which pip3.4
~/python3.4-flask/venv/bin/pip3.4
[leo@linux-vps python3.4-flask] which python3.4
~/python3.4-flask/venv/bin/python3.4

使用pip安装flask

让我们继续安装第一个模块flask框架,它可以处理访问路由和渲染显示我们app的模板。

[leo@linux-vps python3.4-flask]pip3.4 install flask

Atas ialah kandungan terperinci Linux上使用Python和Flask创建应用的方法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python vs C: Lengkung pembelajaran dan kemudahan penggunaanPython vs C: Lengkung pembelajaran dan kemudahan penggunaanApr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python vs C: Pengurusan dan Kawalan MemoriPython vs C: Pengurusan dan Kawalan MemoriApr 19, 2025 am 12:17 AM

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Python untuk pengkomputeran saintifik: rupa terperinciPython untuk pengkomputeran saintifik: rupa terperinciApr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python dan C: Mencari alat yang betulPython dan C: Mencari alat yang betulApr 19, 2025 am 12:04 AM

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python untuk sains data dan pembelajaran mesinPython untuk sains data dan pembelajaran mesinApr 19, 2025 am 12:02 AM

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

mPDF

mPDF

mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa