Rumah  >  Artikel  >  pembangunan bahagian belakang  >  Python黑魔法之描述符的使用介绍

Python黑魔法之描述符的使用介绍

高洛峰
高洛峰asal
2017-03-17 17:36:371156semak imbas

引言

Descriptors(描述符)是Python语言中一个深奥但很重要的一个黑魔法,它被广泛应用于Python语言的内核,熟练掌握描述符将会为Python程序员的工具箱添加一个额外的技巧。本文我将讲述描述符的定义以及一些常见的场景,并且在文末会补充一下getattrgetattributegetitem这三个同样涉及到属性访问的魔术方法

描述符的定义

descrget(self, obj, objtype=None) --> value
descr.set(self, obj, value) --> None
descr.delete(self, obj) --> None

只要一个<a href="http://www.php.cn/wiki/60.html" target="_blank">object</a> attribute(对象属性)定义了上面三个方法中的任意一个,那么这个类就可以被称为描述符类。

描述符基础

下面这个例子中我们创建了一个RevealAcess类,并且实现了get方法,现在这个类可以被称为一个描述符类。

class RevealAccess(object):
    def get(self, obj, objtype):
        print(&#39;self in RevealAccess: {}&#39;.format(self))
        print(&#39;self: {}\nobj: {}\nobjtype: {}&#39;.format(self, obj, objtype))
class MyClass(object):
    x = RevealAccess()
    def test(self):
        print(&#39;self in MyClass: {}&#39;.format(self))

EX1实例属性

接下来我们来看一下get方法的各个参数的含义,在下面这个例子中,self即RevealAccess类的实例x,obj即MyClass类的实例m,objtype顾名思义就是MyClass类自身。从输出语句可以看出,m.x访问描述符x会调用get方法。

>>> m = MyClass()
>>> m.test()
self in MyClass: <main.MyClass object at 0x7f19d4e42160>
>>> m.x
self in RevealAccess: <main.RevealAccess object at 0x7f19d4e420f0>
self: <main.RevealAccess object at 0x7f19d4e420f0>
obj: <main.MyClass object at 0x7f19d4e42160>
objtype: <class &#39;main.MyClass&#39;>

EX2类属性

如果通过类直接访问属性x,那么obj接直接为None,这还是比较好理解,因为不存在MyClass的实例。

>>> MyClass.x
self in RevealAccess: <main.RevealAccess object at 0x7f53651070f0>
self: <main.RevealAccess object at 0x7f53651070f0>
obj: None
objtype: <class &#39;main.MyClass&#39;>

描述符的原理

描述符触发

上面这个例子中,我们分别从实例属性和类属性的角度列举了描述符的用法,下面我们来仔细分析一下内部的原理:

  • 如果是对实例属性进行访问,实际上调用了基类object的getattribute方法,在这个方法中将obj.d转译成了type(obj).dict['d'].get(obj, type(obj))

  • 如果是对类属性进行访问,相当于调用了元类type的getattribute方法,它将cls.d转译成cls.dict['d'].get(None, cls),这里get()的obj为的None,因为不存在实例。

简单讲一下getattribute魔术方法,这个方法在我们访问一个对象的属性的时候会被无条件调用,详细的细节比如和getattrgetitem的区别我会在文章的末尾做一个额外的补充,我们暂时并不深究。

描述符优先级

首先,描述符分为两种:

  • 如果一个对象同时定义了get()和set()方法,则这个描述符被称为data descriptor

  • 如果一个对象只定义了get()方法,则这个描述符被称为non-data descriptor

我们对属性进行访问的时候存在下面四种情况:

  • data descriptor

  • instance dict

  • non-data descriptor

  • getattr()

它们的优先级大小是:

data descriptor > instance dict > non-data descriptor > getattr()

这是什么意思呢?就是说如果实例对象obj中出现了同名的data descriptor->d 和 instance attribute->dobj.d对属性d进行访问的时候,由于data descriptor具有更高的优先级,Python便会调用type(obj).dict['d'].get(obj, type(obj))而不是调用obj.dict[‘d’]。但是如果描述符是个non-data descriptor,Python则会调用obj.dict['d']

Property

每次使用描述符的时候都定义一个描述符类,这样看起来非常繁琐。Python提供了一种简洁的方式用来向属性添加数据描述符。

property(fget=None, fset=None, fdel=None, doc=None) -> property attribute

fget、fset和fdel分别是类的getter、setter和deleter方法。我们通过下面的一个示例来说明如何使用Property:

class Account(object):
    def init(self):
        self._acct_num = None
    def get_acct_num(self):
        return self._acct_num
    def set_acct_num(self, value):
        self._acct_num = value
    def del_acct_num(self):
        del self._acct_num
    acct_num = property(get_acct_num, set_acct_num, del_acct_num, &#39;_acct_num property.&#39;)

如果acct是Account的一个实例,acct.acct_num将会调用getter,acct.acct_num = value将调用setter,del acct_num.acct_num将调用deleter。

>>> acct = Account()
>>> acct.acct_num = 1000
>>> acct.acct_num
1000

Python也提供了@property装饰器,对于简单的应用场景可以使用它来创建属性。一个属性对象拥有getter,setter和deleter装饰器方法,可以使用它们通过对应的被装饰函数的accessor函数创建属性的拷贝。

class Account(object):
    def init(self):
        self._acct_num = None
    @property
     # the _acct_num property. the decorator creates a read-only property
    def acct_num(self):
        return self._acct_num
    @acct_num.setter
    # the _acct_num property setter makes the property writeable
    def set_acct_num(self, value):
        self._acct_num = value
    @acct_num.deleter
    def del_acct_num(self):
        del self._acct_num

如果想让属性只读,只需要去掉setter方法。

在运行时创建描述符

我们可以在运行时添加property属性:

class Person(object):
    def addProperty(self, attribute):
        # create local setter and getter with a particular attribute name
        getter = lambda self: self._getProperty(attribute)
        setter = lambda self, value: self._setProperty(attribute, value)
        # construct property attribute and add it to the class
        setattr(self.class, attribute, property(fget=getter, \
                                                    fset=setter, \
                                                    doc="Auto-generated method"))
    def _setProperty(self, attribute, value):
        print("Setting: {} = {}".format(attribute, value))
        setattr(self, &#39;_&#39; + attribute, value.title())
    def _getProperty(self, attribute):
        print("Getting: {}".format(attribute))
        return getattr(self, &#39;_&#39; + attribute)
>>> user = Person()
>>> user.addProperty(&#39;name&#39;)
>>> user.addProperty(&#39;phone&#39;)
>>> user.name = &#39;john smith&#39;
Setting: name = john smith
>>> user.phone = &#39;12345&#39;
Setting: phone = 12345
>>> user.name
Getting: name
&#39;John Smith&#39;
>>> user.dict
{&#39;_phone&#39;: &#39;12345&#39;, &#39;_name&#39;: &#39;John Smith&#39;}

静态方法和类方法

我们可以使用描述符来模拟Python中的@<a href="http://www.php.cn/wiki/188.html" target="_blank">static</a>method@classmethod的实现。我们首先来浏览一下下面这张表:

Transformation Called from an Object Called from a Class
function f(obj, *args) f(*args)
staticmethod f(*args) f(*args)
classmethod f(type(obj), *args) f(klass, *args)

静态方法

对于静态方法fc.fC.f是等价的,都是直接查询object.getattribute(c, ‘f’)或者object.getattribute(C, ’f‘)。静态方法一个明显的特征就是没有self变量

静态方法有什么用呢?假设有一个处理专门数据的容器类,它提供了一些方法来求平均数,中位数等统计数据方式,这些方法都是要依赖于相应的数据的。但是类中可能还有一些方法,并不依赖这些数据,这个时候我们可以将这些方法声明为静态方法,同时这也可以提高代码的可读性。

使用非数据描述符来模拟一下静态方法的实现:

class StaticMethod(object):
    def init(self, f):
        self.f = f
    def get(self, obj, objtype=None):
        return self.f

我们来应用一下:

class MyClass(object):
    @StaticMethod
    def get_x(x):
        return x
print(MyClass.get_x(100))  # output: 100

类方法

Python的@classmethod@staticmethod的用法有些类似,但是还是有些不同,当某些方法只需要得到类的<a href="http://www.php.cn/wiki/231.html" target="_blank">引用</a>而不关心类中的相应的数据的时候就需要使用classmethod了。

使用非数据描述符来模拟一下类方法的实现:

class ClassMethod(object):
    def init(self, f):
        self.f = f
    def get(self, obj, klass=None):
        if klass is None:
            klass = type(obj)
        def newfunc(*args):
            return self.f(klass, *args)
        return newfunc

其他的魔术方法

首次接触Python魔术方法的时候,我也被getgetattributegetattrgetitem之间的区别困扰到了,它们都是和属性访问相关的魔术方法,其中重写getattrgetitem来构造一个自己的集合类非常的常用,下面我们就通过一些例子来看一下它们的应用。

getattr

Python默认访问类/实例的某个属性都是通过getattribute来调用的,getattribute会被无条件调用,没有找到的话就会调用getattr。如果我们要定制某个类,通常情况下我们不应该重写getattribute,而是应该重写getattr,很少看见重写getattribute的情况。

从下面的输出可以看出,当一个属性通过getattribute无法找到的时候会调用getattr

In [1]: class Test(object):
    ...:     def getattribute(self, item):
    ...:         print(&#39;call getattribute&#39;)
    ...:         return super(Test, self).getattribute(item)
    ...:     def getattr(self, item):
    ...:         return &#39;call getattr&#39;
    ...:
In [2]: Test().a
call getattribute
Out[2]: &#39;call getattr&#39;

应用

对于默认的字典,Python只支持以obj['foo']形式来访问,不支持obj.foo的形式,我们可以通过重写getattr让字典也支持obj['foo']的访问形式,这是一个非常经典常用的用法:

class Storage(dict):
    """
    A Storage object is like a dictionary except `obj.foo` can be used
    in addition to `obj[&#39;foo&#39;]`.
    """
    def getattr(self, key):
        try:
            return self[key]
        except KeyError as k:
            raise AttributeError(k)
    def setattr(self, key, value):
        self[key] = value
    def delattr(self, key):
        try:
            del self[key]
        except KeyError as k:
            raise AttributeError(k)
    def repr(self):
        return &#39;<Storage &#39; + dict.repr(self) + &#39;>&#39;

我们来使用一下我们自定义的加强版字典:

>>> s = Storage(a=1)
>>> s[&#39;a&#39;]
1
>>> s.a
1
>>> s.a = 2
>>> s[&#39;a&#39;]
2
>>> del s.a
>>> s.a
...
AttributeError: &#39;a&#39;

getitem

getitem用于通过下标[]的形式来获取对象中的元素,下面我们通过重写getitem来实现一个自己的list。

class MyList(object):
    def init(self, *args):
        self.numbers = args
    def getitem(self, item):
        return self.numbers[item]
my_list = MyList(1, 2, 3, 4, 6, 5, 3)
print my_list[2]

这个实现非常的简陋,不支持slice和step等功能,请读者自行改进,这里我就不重复了。

应用

下面是参考requests库中对于getitem的一个使用,我们定制了一个忽略属性大小写的字典类。

程序有些复杂,我稍微解释一下:由于这里比较简单,没有使用描述符的需求,所以使用了@property装饰器来代替,lower_keys的功能是将实例字典中的键全部转换成小写并且存储在字典self._lower_keys中。重写了getitem方法,以后我们访问某个属性首先会将键转换为小写的方式,然后并不会直接访问实例字典,而是会访问字典self._lower_keys去查找。赋值/删除操作的时候由于实例字典会进行变更,为了保持self._lower_keys和实例字典同步,首先清除self._lower_keys的内容,以后我们重新查找键的时候再调用getitem的时候会重新新建一个self._lower_keys

class CaseInsensitiveDict(dict):
    @property
    def lower_keys(self):
        if not hasattr(self, &#39;_lower_keys&#39;) or not self._lower_keys:
            self._lower_keys = dict((k.lower(), k) for k in self.keys())
        return self._lower_keys
    def _clear_lower_keys(self):
        if hasattr(self, &#39;_lower_keys&#39;):
            self._lower_keys.clear()
    def contains(self, key):
        return key.lower() in self.lower_keys
    def getitem(self, key):
        if key in self:
            return dict.getitem(self, self.lower_keys[key.lower()])
    def setitem(self, key, value):
        dict.setitem(self, key, value)
        self._clear_lower_keys()
    def delitem(self, key):
        dict.delitem(self, key)
        self._lower_keys.clear()
    def get(self, key, default=None):
        if key in self:
            return self[key]
        else:
            return default

我们来调用一下这个类:

>>> d = CaseInsensitiveDict()
>>> d[&#39;ziwenxie&#39;] = &#39;ziwenxie&#39;
>>> d[&#39;ZiWenXie&#39;] = &#39;ZiWenXie&#39;
>>> print(d)
{&#39;ZiWenXie&#39;: &#39;ziwenxie&#39;, &#39;ziwenxie&#39;: &#39;ziwenxie&#39;}
>>> print(d[&#39;ziwenxie&#39;])
ziwenxie
# d[&#39;ZiWenXie&#39;] => d[&#39;ziwenxie&#39;]
>>> print(d[&#39;ZiWenXie&#39;])
ziwenxi

Atas ialah kandungan terperinci Python黑魔法之描述符的使用介绍 . Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn