Rumah >pembangunan bahagian belakang >Tutorial Python >Python 标准库之 collections 使用教程

Python 标准库之 collections 使用教程

黄舟
黄舟asal
2017-02-04 16:49:131490semak imbas

引言

Python为我们提供了4种基本的数据结构:list, tuple, dict, set,但是在处理数据量较大的情形的时候,这4种数据结构就明显过于单一了,比如list作为单向链表在某些情形插入的效率会比较低,有时候我们也需要维护一个有序的dict。所以这个时候我们就要用到Python标准库为我们提供的collections包了,它提供了多个有用的集合类,熟练掌握这些集合类,不仅可以让我们让写出的代码更加Pythonic,也可以提高我们程序的运行效率。

defaultdict的使用

defaultdict(default_factory)在普通的dict(字典)之上添加了default_factory,使得key(键)不存在时会自动生成相应类型的value(值),default_factory参数可以指定成list, set, int等各种合法类型。

example1

>>> from collections import defaultdict
>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]

我们现在有上面这样一组list(列表),虽然我们有6组数据,但是仔细观察后发现其实我们只有两种color(颜色),但是每一个color对应多个值。现在我们想要将这个list转换成一个dict(字典),这个dict的key(键)对应一种color,dict的value(值)设置为一个list存放color对应的多个值。我们可以使用defaultdict(list)来解决这个问题。

# 
d可以看作一个dict(字典),dict的value是一个list(列表)
>>> d = defaultdict(list)
>>> for k, v in s:
...     d[k].append(v)
...
>>> d
defaultdict(<class &#39;list&#39;>, {&#39;blue&#39;: [2, 4, 4], &#39;red&#39;: [1, 3, 1]})

example2

上面这个例子中有一些不完美的地方,比如说{‘blue’: [2, 4, 4], ‘red’: [1, 3, 1]}这个defaultdict中blue颜色中包含两个4,red颜色中包含两个1,但是我们不希望含有重复的元素,这个时候可以考虑使用defaultdict(set)来解决这个问题。set(集合)相比list(列表)的不同之处在于set中不允许存在相同的元素。

>>> d = defaultdict(set)
>>> for k, v in s:
...     d[k].add(v)
...
>>> d
defaultdict(<class &#39;set&#39;>, {&#39;blue&#39;: {2, 4}, &#39;red&#39;: {1, 3}})

example3

>>> s = 
&#39;hello world&#39;

通过使用defaultdict(int)的形式我们来统计一个字符串中每个字符出现的个数。

>>> d = defaultdict(int)
>>> for k in s:
...     d[k] += 1
...
>>> d
defaultdict(<class &#39;int&#39;>, {&#39;o&#39;: 2, &#39;h&#39;: 1, &#39;w&#39;: 1, &#39;l&#39;: 3, &#39; &#39;: 1, &#39;d&#39;: 1, &#39;e&#39;: 1, &#39;r&#39;: 1})

OrderedDict的使用

我们知道默认的dict(字典)是无序的,但是在某些情形我们需要保持dict的有序性,这个时候可以使用OrderedDict,它是dict的一个subclass(子类),但是在dict的基础上保持了dict的有序型,下面我们来看一下使用方法。

example1

>>> from collections import OrderedDict
# 
无序的dict
>>> d = {&#39;banana&#39;: 3, &#39;apple&#39;: 4, &#39;pear&#39;: 1, &#39;orange&#39;: 2}

这是一个无序的dict(字典),现在我们可以使用OrderedDict来让这个dict变得有序。

# 
将d按照key来排序
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([(&#39;apple&#39;, 4), (&#39;banana&#39;, 3), (&#39;orange&#39;, 2), (&#39;pear&#39;, 1)])
# 
将d按照value来排序
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([(&#39;pear&#39;, 1), (&#39;orange&#39;, 2), (&#39;banana&#39;, 3), (&#39;apple&#39;, 4)])
# 
将d按照key的长度来排序
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([(&#39;pear&#39;, 1), (&#39;apple&#39;, 4), (&#39;orange&#39;, 2), (&#39;banana&#39;, 3)])

example2

使用popitem(last=True)方法可以让我们按照LIFO(先进后出)的顺序删除dict中的key-value,即删除最后一个插入的键值对,如果last=False就按照FIFO(先进先出)删除dict中key-value。

>>> d = {&#39;banana&#39;: 3, &#39;apple&#39;: 4, &#39;pear&#39;: 1, &#39;orange&#39;: 2}
# 
将d按照key来排序
>>> d = OrderedDict(sorted(d.items(), key=lambda t: t[0]))
>>> d
OrderedDict([(&#39;apple&#39;, 4), (&#39;banana&#39;, 3), (&#39;orange&#39;, 2), (&#39;pear&#39;, 1)])
# 
使用popitem()方法来移除最后一个key-value对
>>> d.popitem()
(&#39;pear&#39;, 1)
# 
使用popitem(last=False)来移除第一个key-value对
>>> d.popitem(last=False)
(&#39;apple&#39;, 4)

example3

使用move_to_end(key, last=True)来改变有序的OrderedDict对象的key-value顺序,通过这个方法我们可以将排序好的OrderedDict对象中的任意一个key-value插入到字典的开头或者结尾。

>>> d = OrderedDict.fromkeys(&#39;abcde&#39;)
>>> d
OrderedDict([(&#39;a&#39;, None), (&#39;b&#39;, None), (&#39;c&#39;, None), (&#39;d&#39;, None), (&#39;e&#39;, None)])
# 
将key为b的key-value对移动到dict的最后
>>> d.move_to_end(&#39;b&#39;)
>>> d
OrderedDict([(&#39;a&#39;, None), (&#39;c&#39;, None), (&#39;d&#39;, None), (&#39;e&#39;, None), (&#39;b&#39;, None)])
>>> &#39;&#39;.join(d.keys())
&#39;acdeb&#39;
# 
将key为b的key-value对移动到dict的最前面
>>> d.move_to_end(&#39;b&#39;, last=False)
>>> &#39;&#39;.join(d.keys())
&#39;bacde&#39;

deque的使用

list存储数据的优势在于按找索引查找元素会很快,但是插入和删除元素就很慢了,因为它是是单链表的数据结构。deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈,而且线程安全。

list只提供了append和pop方法来从list的尾部插入/删除元素,但是deque新增了appendleft/popleft允许我们高效的在元素的开头来插入/删除元素。而且使用deque在队列两端添加(append)或弹出(pop)元素的算法复杂度大约是O(1),但是对于list对象改变列表长度和数据位置的操作例如 pop(0)和insert(0, v)操作的复杂度高达O(n)。由于对deque的操作和list基本一致,这里就不重复了。

ChainMap的使用

ChainMap用来将多个dict(字典)组成一个list(只是比喻),可以理解成合并多个字典,但和update不同,而且效率更高。

>>> from collections import ChainMap
>>> a = {&#39;a&#39;: &#39;A&#39;, &#39;c&#39;: &#39;C&#39;}
>>> b = {&#39;b&#39;: &#39;B&#39;, &#39;c&#39;: &#39;D&#39;}
>>> m = ChainMap(a, b)
# 
构造一个ChainMap对象
>>> m
ChainMap({&#39;a&#39;: &#39;A&#39;, &#39;c&#39;: &#39;C&#39;}, {&#39;b&#39;: &#39;B&#39;, &#39;c&#39;: &#39;D&#39;})
>>> m[&#39;a&#39;]
&#39;A&#39;
>>> m[&#39;b&#39;]
&#39;B&#39;
# 
将m变成一个list
>>> m.maps
[{&#39;a&#39;: &#39;A&#39;, &#39;c&#39;: &#39;C&#39;}, {&#39;b&#39;: &#39;B&#39;, &#39;c&#39;: &#39;D&#39;}]

# 
更新a中的值也会对ChainMap对象造成影响
>>> a[&#39;c&#39;] = &#39;E&#39;
>>> m[&#39;c&#39;]
&#39;E&#39;
# 
从m复制一个ChainMap对象,更新这个复制的对象并不会对m造成影响
>>> m2 = m.new_child()
>>> m2[&#39;c&#39;] = &#39;f&#39;
>>> m[&#39;c&#39;]
&#39;E&#39;
>>> a[&#39;c&#39;]
&#39;E&#39;
>>> m2.parents
ChainMap({&#39;a&#39;: &#39;A&#39;, &#39;c&#39;: &#39;C&#39;}, {&#39;b&#39;: &#39;B&#39;, &#39;c&#39;: &#39;D&#39;})

Counter的使用

example1

Counter也是dict的一个subclass,它是一个无序容器,可以看做一个计数器,用来统计相关元素出现的个数。

>>> from collections import Counter
>>> cnt = Counter()
# 
统计列表中元素出现的个数
>>> for word in [&#39;red&#39;, &#39;blue&#39;, &#39;red&#39;, &#39;green&#39;, &#39;blue&#39;, &#39;blue&#39;]:
...  cnt[word] += 1
...
>>> cnt
Counter({&#39;blue&#39;: 3, &#39;red&#39;: 2, &#39;green&#39;: 1})
# 
统计字符串中元素出现的个数
>>> cnt = Counter()
>>> for ch in &#39;hello&#39;:
...     cnt[ch] = cnt[ch] + 1
...
>>> cnt
Counter({&#39;l&#39;: 2, &#39;o&#39;: 1, &#39;h&#39;: 1, &#39;e&#39;: 1})

example2

使用elements()方法按照元素的出现次数返回一个iterator(迭代器),元素以任意的顺序返回,如果元素的计数小于1,将忽略它。

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> c
Counter({&#39;a&#39;: 4, &#39;b&#39;: 2, &#39;c&#39;: 0, &#39;d&#39;: -2})
>>> c.elements()
<itertools.chain object at 0x7fb0a069ccf8>
>>> next(c)
&#39;a&#39;
# 
排序
>>> sorted(c.elements())
[&#39;a&#39;, &#39;a&#39;, &#39;a&#39;, &#39;a&#39;, &#39;b&#39;, &#39;b&#39;]

使用most_common(n)返回一个list, list中包含Counter对象中出现最多前n个元素。

>>> c = Counter(&#39;abracadabra&#39;)
>>> c
Counter({&#39;a&#39;: 5, &#39;b&#39;: 2, &#39;r&#39;: 2, &#39;d&#39;: 1, &#39;c&#39;: 1})
>>> c.most_common(3)
[(&#39;a&#39;, 5), (&#39;b&#39;, 2), (&#39;r&#39;, 2)]

namedtuple的使用

使用namedtuple(typename, field_names)命名tuple中的元素来使程序更具可读性。

>>> from collections import namedtuple
>>> Point = namedtuple(&#39;PointExtension&#39;, [&#39;x&#39;, &#39;y&#39;])
>>> p = Point(1, 2)
>>> p.__class__.__name__
&#39;PointExtension&#39;
>>> p.x
1
>>> p.y
2

以上就是Python 标准库之 collections 使用教程 的内容,更多相关内容请关注PHP中文网(www.php.cn)!


Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn