Rumah >pembangunan bahagian belakang >tutorial php >MySQL索引背后的数据结构及算法原理详解
摘要
本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论。
文章主要内容分为三个部分。
第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础。
第二部分结合MySQL数据库中MyISAM和InnoDB数据存储引擎中索引的架构实现讨论聚集索引、非聚集索引及覆盖索引等话题。
第三部分根据上面的理论基础,讨论MySQL中高性能使用索引的策略。
数据结构及算法基础
索引的本质
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。提取句子主干,就可以得到索引的本质:索引是数据结构。
我们知道,数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找(linear search),这种复杂度为O(n)的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找(binary search)、二叉树查找(binary tree search)等。如果稍微分析一下会发现,每种查找算法都只能应用于特定的数据结构之上,例如二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织),所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
看一个例子:
图1
图1展示了一种可能的索引方式。左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在O(log2n)的复杂度内获取到相应数据。
虽然这是一个货真价实的索引,但是实际的数据库系统几乎没有使用二叉查找树或其进化品种红黑树(red-black tree)实现的,原因会在下文介绍。
B-Tree和B+Tree
目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构,在本文的下一节会结合存储器原理及计算机存取原理讨论为什么B-Tree和B+Tree在被如此广泛用于索引,这一节先单纯从数据结构角度描述它们。
B-Tree
为了描述B-Tree,首先定义一条数据记录为一个二元组[key, data],key为记录的键值,对于不同数据记录,key是互不相同的;data为数据记录除key外的数据。那么B-Tree是满足下列条件的数据结构:
1. d为大于1的一个正整数,称为B-Tree的度。
2. h为一个正整数,称为B-Tree的高度。
3. 每个非叶子节点由n-1个key和n个指针组成,其中dde584a06689ad75aec6d4baa6cdb3404= pointsize)
或
dmax = floor(pagesize / (keysize + datasize + pointsize)) – 1 (pagesize – dmax 1b6c76b07c7ceae91c6febb385f089fc,其中各个元素均为数据表的一列,实际上要严格定义索引需要用到关系代数,但是这里我不想讨论太多关系代数的话题,因为那样会显得很枯燥,所以这里就不再做严格定义。另外,单列索引可以看成联合索引元素数为1的特例。
以employees.titles表为例,下面先查看其上都有哪些索引:
SHOW INDEX FROM employees.titles; +--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Null | Index_type | +--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+ | titles | 0 | PRIMARY | 1 | emp_no | A | NULL | | BTREE | | titles | 0 | PRIMARY | 2 | title | A | NULL | | BTREE | | titles | 0 | PRIMARY | 3 | from_date | A | 443308 | | BTREE | | titles | 1 | emp_no | 1 | emp_no | A | 443308 | | BTREE | +--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
从结果中可以到titles表的主索引为2edf70462aec34d246ed5fbfe81a14e2,还有一个辅助索引9c1cfd0e03d2dbbafd0e943c0f7c22b2。为了避免多个索引使事情变复杂(MySQL的SQL优化器在多索引时行为比较复杂),这里我们将辅助索引drop掉:
ALTER TABLE employees.titles DROP INDEX emp_no;
这样就可以专心分析索引PRIMARY的行为了。
情况一:全列匹配。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title='Senior Engineer' AND from_date='1986-06-26'; +----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+ | 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | | +----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
很明显,当按照索引中所有列进行精确匹配(这里精确匹配指“=”或“IN”匹配)时,索引可以被用到。这里有一点需要注意,理论上索引对顺序是敏感的,但是由于MySQL的查询优化器会自动调整where子句的条件顺序以使用适合的索引,例如我们将where中的条件顺序颠倒:
EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26' AND emp_no='10001' AND title='Senior Engineer'; +----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+ | 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | | +----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
效果是一样的。
情况二:最左前缀匹配。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001'; +----+-------------+--------+------+---------------+---------+---------+-------+------+-------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+------+---------------+---------+---------+-------+------+-------+ | 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | | +----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
当查询条件精确匹配索引的左边连续一个或几个列时,如9c1cfd0e03d2dbbafd0e943c0f7c22b2或b3bdf3b867be77190e8fb4ee8b7a3438,所以可以被用到,但是只能用到一部分,即条件所组成的最左前缀。上面的查询从分析结果看用到了PRIMARY索引,但是key_len为4,说明只用到了索引的第一列前缀。
情况三:查询条件用到了索引中列的精确匹配,但是中间某个条件未提供。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26'; +----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+ | 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where | +----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
此时索引使用情况和情况二相同,因为title未提供,所以查询只用到了索引的第一列,而后面的from_date虽然也在索引中,但是由于title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no唯一,所以不存在扫描)。如果想让from_date也使用索引而不是where过滤,可以增加一个辅助索引f4266bc41cbff457a473e7d1dd86b8f0,此时上面的查询会使用这个索引。除此之外,还可以使用一种称之为“隔离列”的优化方法,将emp_no与from_date之间的“坑”填上。
首先我们看下title一共有几种不同的值:
SELECT DISTINCT(title) FROM employees.titles; +--------------------+ | title | +--------------------+ | Senior Engineer | | Staff | | Engineer | | Senior Staff | | Assistant Engineer | | Technique Leader | | Manager | +--------------------+
只有7种。在这种成为“坑”的列值比较少的情况下,可以考虑用“IN”来填补这个“坑”从而形成最左前缀:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title IN ('Senior Engineer', 'Staff', 'Engineer', 'Senior Staff', 'Assistant Engineer', 'Technique Leader', 'Manager') AND from_date='1986-06-26'; +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 7 | Using where | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
这次key_len为59,说明索引被用全了,但是从type和rows看出IN实际上执行了一个range查询,这里检查了7个key。看下两种查询的性能比较:
SHOW PROFILES; +----------+------------+-------------------------------------------------------------------------------+ | Query_ID | Duration | Query | +----------+------------+-------------------------------------------------------------------------------+ | 10 | 0.00058000 | SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26'| | 11 | 0.00052500 | SELECT * FROM employees.titles WHERE emp_no='10001' AND title IN ... | +----------+------------+-------------------------------------------------------------------------------+
“填坑”后性能提升了一点。如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。当然,如果title的值很多,用填坑就不合适了,必须建立辅助索引。
情况四:查询条件没有指定索引第一列。
EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26'; +----+-------------+--------+------+---------------+------+---------+------+--------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+------+---------------+------+---------+------+--------+-------------+ | 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where | +----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
由于不是最左前缀,索引这样的查询显然用不到索引。
情况五:匹配某列的前缀字符串。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title LIKE 'Senior%'; +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 56 | NULL | 1 | Using where | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
此时可以用到索引,但是如果通配符不是只出现在末尾,则无法使用索引。(原文表述有误,如果通配符%不出现在开头,则可以用到索引,但根据具体情况不同可能只会用其中一个前缀)
情况六:范围查询。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no < '10010' and title='Senior Engineer'; +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
范围列可以用到索引(必须是最左前缀),但是范围列后面的列无法用到索引。同时,索引最多用于一个范围列,因此如果查询条件中有两个范围列则无法全用到索引。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no < 10010' AND title='Senior Engineer' AND from_date BETWEEN '1986-01-01' AND '1986-12-31'; +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
可以看到索引对第二个范围索引无能为力。这里特别要说明MySQL一个有意思的地方,那就是仅用explain可能无法区分范围索引和多值匹配,因为在type中这两者都显示为range。同时,用了“between”并不意味着就是范围查询,例如下面的查询:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no BETWEEN '10001' AND '10010' AND title='Senior Engineer' AND from_date BETWEEN '1986-01-01' AND '1986-12-31'; +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+ | 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 16 | Using where | +----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
看起来是用了两个范围查询,但作用于emp_no上的“BETWEEN”实际上相当于“IN”,也就是说emp_no实际是多值精确匹配。可以看到这个查询用到了索引全部三个列。因此在MySQL中要谨慎地区分多值匹配和范围匹配,否则会对MySQL的行为产生困惑。
情况七:查询条件中含有函数或表达式。
很不幸,如果查询条件中含有函数或表达式,则MySQL不会为这列使用索引(虽然某些在数学意义上可以使用)。例如:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND left(title, 6)='Senior'; +----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+ | 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where | +----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
虽然这个查询和情况五中功能相同,但是由于使用了函数left,则无法为title列应用索引,而情况五中用LIKE则可以。再如:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no - 1='10000'; +----+-------------+--------+------+---------------+------+---------+------+--------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------+------+---------------+------+---------+------+--------+-------------+ | 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where | +----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
显然这个查询等价于查询emp_no为10001的函数,但是由于查询条件是一个表达式,MySQL无法为其使用索引。看来MySQL还没有智能到自动优化常量表达式的程度,因此在写查询语句时尽量避免表达式出现在查询中,而是先手工私下代数运算,转换为无表达式的查询语句。
索引选择性与前缀索引
既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。
第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。
另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:
Index Selectivity = Cardinality / #T
显然选择性的取值范围为(0, 1],选择性越高的索引价值越大,这是由B+Tree的性质决定的。例如,上文用到的employees.titles表,如果title字段经常被单独查询,是否需要建索引,我们看一下它的选择性:
SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles; +-------------+ | Selectivity | +-------------+ | 0.0000 | +-------------+
title的选择性不足0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。
有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以employees.employees表为例介绍前缀索引的选择和使用。
从图12可以看到employees表只有一个索引9c1cfd0e03d2dbbafd0e943c0f7c22b2,那么如果我们想按名字搜索一个人,就只能全表扫描了:
EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido'; +----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ | 1 | SIMPLE | employees | ALL | NULL | NULL | NULL | NULL | 300024 | Using where | +----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
如果频繁按名字搜索员工,这样显然效率很低,因此我们可以考虑建索引。有两种选择,建7bdc5ee5d865113579e62388025cda25或3745efe5d8f81752c2146f9ea4256056,看下两个索引的选择性:
SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.0042 | +-------------+ SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.9313 | +-------------+
7bdc5ee5d865113579e62388025cda25显然选择性太低,3745efe5d8f81752c2146f9ea4256056选择性很好,但是first_name和last_name加起来长度为30,有没有兼顾长度和选择性的办法?可以考虑用first_name和last_name的前几个字符建立索引,例如67aafbddd9235bf881e5fd852729a3d3,看看其选择性:
SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.7879 | +-------------+
选择性还不错,但离0.9313还是有点距离,那么把last_name前缀加到4:
SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.9007 | +-------------+
这时选择性已经很理想了,而这个索引的长度只有18,比3745efe5d8f81752c2146f9ea4256056短了接近一半,我们把这个前缀索引 建上:
ALTER TABLE employees.employees ADD INDEX `first_name_last_name4` (first_name, last_name(4));
此时再执行一遍按名字查询,比较分析一下与建索引前的结果:
SHOW PROFILES; +----------+------------+---------------------------------------------------------------------------------+ | Query_ID | Duration | Query | +----------+------------+---------------------------------------------------------------------------------+ | 87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' | | 90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' | +----------+------------+---------------------------------------------------------------------------------+
性能的提升是显著的,查询速度提高了120多倍。
前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。
InnoDB的主键选择与插入优化
在使用InnoDB存储引擎时,如果没有特别的需要,请永远使用一个与业务无关的自增字段作为主键。
经常看到有帖子或博客讨论主键选择问题,有人建议使用业务无关的自增主键,有人觉得没有必要,完全可以使用如学号或身份证号这种唯一字段作为主键。不论支持哪种论点,大多数论据都是业务层面的。如果从数据库索引优化角度看,使用InnoDB引擎而不使用自增主键绝对是一个糟糕的主意。
上文讨论过InnoDB的索引实现,InnoDB使用聚集索引,数据记录本身被存于主索引(一颗B+Tree)的叶子节点上。这就要求同一个叶子节点内(大小为一个内存页或磁盘页)的各条数据记录按主键顺序存放,因此每当有一条新的记录插入时,MySQL会根据其主键将其插入适当的节点和位置,如果页面达到装载因子(InnoDB默认为15/16),则开辟一个新的页(节点)。
如果表使用自增主键,那么每次插入新的记录,记录就会顺序添加到当前索引节点的后续位置,当一页写满,就会自动开辟一个新的页。如下图所示:
图13
这样就会形成一个紧凑的索引结构,近似顺序填满。由于每次插入时也不需要移动已有数据,因此效率很高,也不会增加很多开销在维护索引上。
如果使用非自增主键(如果身份证号或学号等),由于每次插入主键的值近似于随机,因此每次新纪录都要被插到现有索引页得中间某个位置:
图14
此时MySQL不得不为了将新记录插到合适位置而移动数据,甚至目标页面可能已经被回写到磁盘上而从缓存中清掉,此时又要从磁盘上读回来,这增加了很多开销,同时频繁的移动、分页操作造成了大量的碎片,得到了不够紧凑的索引结构,后续不得不通过OPTIMIZE TABLE来重建表并优化填充页面。
因此,只要可以,请尽量在InnoDB上采用自增字段做主键。
后记
这篇文章断断续续写了半个月,主要内容就是上面这些了。不可否认,这篇文章在一定程度上有纸上谈兵之嫌,因为我本人对MySQL的使用属于菜鸟级别,更没有太多数据库调优的经验,在这里大谈数据库索引调优有点大言不惭。就当是我个人的一篇学习笔记了。
其实数据库索引调优是一项技术活,不能仅仅靠理论,因为实际情况千变万化,而且MySQL本身存在很复杂的机制,如查询优化策略和各种引擎的实现差异等都会使情况变得更加复杂。但同时这些理论是索引调优的基础,只有在明白理论的基础上,才能对调优策略进行合理推断并了解其背后的机制,然后结合实践中不断的实验和摸索,从而真正达到高效使用MySQL索引的目的。
另外,MySQL索引及其优化涵盖范围非常广,本文只是涉及到其中一部分。如与排序(ORDER BY)相关的索引优化及覆盖索引(Covering index)的话题本文并未涉及,同时除B-Tree索引外MySQL还根据不同引擎支持的哈希索引、全文索引等等本文也并未涉及。如果有机会,希望再对本文未涉及的部分进行补充吧。
参考文献
[1] Baron Scbwartz等 著,王小东等 译;高性能MySQL(High Performance MySQL);电子工业出版社,2010
[2] Michael Kofler 著,杨晓云等 译;MySQL5权威指南(The Definitive Guide to MySQL5);人民邮电出版社,2006
[3] 姜承尧 著;MySQL技术内幕-InnoDB存储引擎;机械工业出版社,2011
[4] D Comer, Ubiquitous B-tree; ACM Computing Surveys (CSUR), 1979
[5] Codd, E. F. (1970). “A relational model of data for large shared data banks”. Communications of the ACM, , Vol. 13, No. 6, pp. 377-387
[6] MySQL5.1参考手册 – http://dev.mysql.com/doc/refman/5.1/zh/index.html
更多MySQL索引背后的数据结构及算法原理详解相关文章请关注PHP中文网!