cari
Rumahpembangunan bahagian belakangTutorial PythonPython 描述符(Descriptor)入门

很久都没写 Flask 代码相关了,想想也真是惭愧,然并卵,这次还是不写 Flask 相关,不服你来打我啊(就这么贱,有本事咬我啊

这次我来写一下 Python 一个很重要的东西,即 Descriptor (描述符)

初识描述符

老规矩, Talk is cheap,Show me the code. 我们先来看看一段代码

classPerson(object):
""""""

#----------------------------------------------------------------------
def__init__(self, first_name, last_name):
"""Constructor"""
 self.first_name = first_name
 self.last_name = last_name

#----------------------------------------------------------------------
 @property
deffull_name(self):
"""
 Return the full name
 """
return"%s %s"% (self.first_name, self.last_name)

if__name__=="__main__":
 person = Person("Mike","Driscoll")
 print(person.full_name)
# 'Mike Driscoll'
 print(person.first_name)
# 'Mike'

这段代大家肯定很熟悉,恩, property 嘛,谁不知道呢,但是 property 的实现机制大家清楚么?什么不清楚?那还学个毛的 Python 啊。。。开个玩笑,我们看下面一段代码

classProperty(object):
"Emulate PyProperty_Type() in Objects/descrobject.c"
def__init__(self, fget=None, fset=None, fdel=None, doc=None):
 self.fget = fget
 self.fset = fset
 self.fdel = fdel
ifdocisNoneandfgetisnotNone:
 doc = fget.__doc__
 self.__doc__ = doc

def__get__(self, obj, objtype=None):
ifobjisNone:
returnself
ifself.fgetisNone:
raiseAttributeError("unreadable attribute")
returnself.fget(obj)

def__set__(self, obj, value):
ifself.fsetisNone:
raiseAttributeError("can't set attribute")
 self.fset(obj, value)

def__delete__(self, obj):
ifself.fdelisNone:
raiseAttributeError("can't delete attribute")
 self.fdel(obj)

defgetter(self, fget):
returntype(self)(fget, self.fset, self.fdel, self.__doc__)

defsetter(self, fset):
returntype(self)(self.fget, fset, self.fdel, self.__doc__)

defdeleter(self, fdel):
returntype(self)(self.fget, self.fset, fdel, self.__doc__)

看起来是不是很复杂,没事,我们来一步步的看。不过这里我们首先给出一个结论: Descriptors 是一种特殊 的对象,这种对象实现了 __get__ , __set__ , __delete__ 这三个特殊方法。

详解描述符

说说 Property

在上文,我们给出了 Propery 实现代码,现在让我们来详细说说这个

classPerson(object):
""""""

#----------------------------------------------------------------------
def__init__(self, first_name, last_name):
"""Constructor"""
 self.first_name = first_name
 self.last_name = last_name

#----------------------------------------------------------------------
 @property
deffull_name(self):
"""
 Return the full name
 """
return"%s %s"% (self.first_name, self.last_name)

if__name__=="__main__":
 person = Person("Mike","Driscoll")
 print(person.full_name)
# 'Mike Driscoll'
 print(person.first_name)
# 'Mike'

首先,如果你对装饰器不了解的话,你可能要去看看这篇文章,简而言之,在我们正式运行代码之前,我们的解释器就会对我们的代码进行一次扫描,对涉及装饰器的部分进行替换。类装饰器同理。在上文中,这段代码

@Property
deffull_name(self):
"""
 Return the full name
 """
return"%s %s"% (self.first_name, self.last_name)

会触发这样一个过程,即 full_name=Property(full_name) 。然后在我们后面所实例化对象之后我们调用 person.full_name 这样一个过程其实等价于 person.full_name.__get__(person) 然后进而触发 __get__() 方法里所写的 return self.fget(obj) 即原本上我们所编写的 def full_name 内的执行代码。

这个时候,同志们可以去思考下 getter() , setter() ,以及 deleter() 的具体运行机制了=。=如果还是有问题,欢迎在评论里进行讨论。

关于描述符

还记得之前我们所提到的一个定义么: Descriptors 是一种特殊的对象,这种对象实现了 __get__ , __set__ , __delete__ 这三个特殊方法 。然后在 Python 官方文档的说明中,为了体现描述符的重要性,有这样一段话:“They are the mechanism behind properties, methods, static methods, class methods, and super(). They are used throughout Python itself to implement the new style classes introduced in version 2.2. ” 简而言之就是 先有描述符后有天,秒天秒地秒空气 。恩,在新式类中,属性,方法调用,静态方法,类方法等都是基于描述符的特定使用。

OK,你可能想问,为什么描述符是这么重要呢?别急,我们接着看

使用描述符

首先请看下一段代码

classA(object):#注:在 Python 3.x 版本中,对于 new class 的使用不需要显式的指定从 object 类进行继承,如果在 Python 2.X(x>2)的版本中则需要

defa(self):
pass
if__name__=="__main__":
 a=A()
 a.a()

大家都注意到了我们存在着这样一个语句 a.a() ,好的,现在请大家思考下,我们在调用这个方法的时候发生了什么?

OK?想出来了么?没有?好的我们继续

首先我们调用一个属性的时候,不管是成员还是方法,我们都会触发这样一个方法用于调用属性 __getattribute__() ,在我们的 __getattribute__() 方法中,如果我们尝试调用的属性实现了我们的描述符协议,那么会产生这样一个调用过程 type(a).__dict__['a'].__get__(b,type(b)) 。好的这里我们又要给出一个结论了:“在这样一个调用过程中,有这样一个优先级顺序,如果我们所尝试调用属性是一个 data descriptors ,那么不管这个属性是否存在我们的实例的 __dict__ 字典中,优先调用我们描述符里的 __get__ 方法,如果我们所尝试调用属性是一个 non data descriptors ,那么我们优先调用我们实例里的 __dict__ 里的存在的属性,如果不存在,则依照相应原则往上查找我们类,父类中的 __dict__ 中所包含的属性,一旦属性存在,则调用 __get__ 方法,如果不存在则调用 __getattr__() 方法”。理解起来有点抽象?没事,我们马上会讲,不过在这里,我们先要解释下 data descriptors 与 non data descriptors ,再来看一个例子。什么是 data descriptors 与 non data descriptors 呢?其实很简单,在描述符中同时实现了 __get__ 与 __set__ 协议的描述符是 data descriptors ,如果只实现了 __get__ 协议的则是 non data descriptors 。好了我们现在来看个例子:

importmath
classlazyproperty:
def__init__(self, func):
 self.func = func

def__get__(self, instance, owner):
ifinstanceisNone:
returnself
else:
 value = self.func(instance)
 setattr(instance, self.func.__name__, value)
returnvalue
classCircle:
def__init__(self, radius):
 self.radius = radius
pass

 @lazyproperty
defarea(self):
 print("Com")
returnmath.pi * self.radius *2

deftest(self):
pass
if__name__=='__main__':
 c=Circle(4)
 print(c.area)

好的,让我们仔细来看看这段代码,首先类描述符 @lazyproperty 的替换过程,前面已经说了,我们不在重复。接着,在我们第一次调用 c.area 的时候,我们首先查询实例 c 的 __dict__ 中是否存在着 area 描述符,然后发现在 c 中既不存在描述符,也不存在这样一个属性,接着我们向上查询 Circle 中的 __dict__ ,然后查找到名为 area 的属性,同时这是一个 non data descriptors ,由于我们的实例字典内并不存在 area 属性,那么我们便调用类字典中的 area 的 __get__ 方法,并在 __get__ 方法中通过调用 setattr 方法为实例字典注册属性 area 。紧接着,我们在后续调用 c.area 的时候,我们能在实例字典中找到 area 属性的存在,且类字典中的 area 是一个 non data descriptors ,于是我们不会触发代码里所实现的 __get__ 方法,而是直接从实例的字典中直接获取属性值。

描述符的使用

描述符的使用面很广,不过其主要的目的在于让我们的调用过程变得可控。因此我们在一些需要对我们调用过程实行精细控制的时候,使用描述符,比如我们之前提到的这个例子

classlazyproperty:
def__init__(self, func):
 self.func = func

def__get__(self, instance, owner):
ifinstanceisNone:
returnself
else:
 value = self.func(instance)
 setattr(instance, self.func.__name__, value)
returnvalue

def__set__(self, instance, value=0):
pass


importmath


classCircle:
def__init__(self, radius):
 self.radius = radius
pass

 @lazyproperty
defarea(self, value=0):
 print("Com")
ifvalue ==0andself.radius ==0:
raiseTypeError("Something went wring")

returnmath.pi * value *2ifvalue !=0elsemath.pi * self.radius *2

deftest(self):
pass

利用描述符的特性实现懒加载,再比如,我们可以控制属性赋值的值

classProperty(object):
"Emulate PyProperty_Type() in Objects/descrobject.c"
def__init__(self, fget=None, fset=None, fdel=None, doc=None):
 self.fget = fget
 self.fset = fset
 self.fdel = fdel
ifdocisNoneandfgetisnotNone:
 doc = fget.__doc__
 self.__doc__ = doc

def__get__(self, obj, objtype=None):
ifobjisNone:
returnself
ifself.fgetisNone:
raiseAttributeError("unreadable attribute")
returnself.fget(obj)

def__set__(self, obj, value=None):
ifvalueisNone:
raiseTypeError("You can`t to set value as None")
ifself.fsetisNone:
raiseAttributeError("can't set attribute")
 self.fset(obj, value)

def__delete__(self, obj):
ifself.fdelisNone:
raiseAttributeError("can't delete attribute")
 self.fdel(obj)

defgetter(self, fget):
returntype(self)(fget, self.fset, self.fdel, self.__doc__)

defsetter(self, fset):
returntype(self)(self.fget, fset, self.fdel, self.__doc__)

defdeleter(self, fdel):
returntype(self)(self.fget, self.fset, fdel, self.__doc__)

classtest():
def__init__(self, value):
 self.value = value

 @Property
defValue(self):
returnself.value

 @Value.setter
deftest(self, x):
 self.value = x

如上面的例子所描述的一样,我们可以判断所传入的值是否有效等等。

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tujuan utama python: fleksibiliti dan kemudahan penggunaanTujuan utama python: fleksibiliti dan kemudahan penggunaanApr 17, 2025 am 12:14 AM

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python: Kekuatan pengaturcaraan serba bolehPython: Kekuatan pengaturcaraan serba bolehApr 17, 2025 am 12:09 AM

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Belajar python dalam 2 jam sehari: panduan praktikalBelajar python dalam 2 jam sehari: panduan praktikalApr 17, 2025 am 12:05 AM

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.

Python vs C: Pro and Cons untuk PemajuPython vs C: Pro and Cons untuk PemajuApr 17, 2025 am 12:04 AM

Python sesuai untuk pembangunan pesat dan pemprosesan data, manakala C sesuai untuk prestasi tinggi dan kawalan asas. 1) Python mudah digunakan, dengan sintaks ringkas, dan sesuai untuk sains data dan pembangunan web. 2) C mempunyai prestasi tinggi dan kawalan yang tepat, dan sering digunakan dalam pengaturcaraan permainan dan sistem.

Python: komitmen masa dan kadar pembelajaranPython: komitmen masa dan kadar pembelajaranApr 17, 2025 am 12:03 AM

Masa yang diperlukan untuk belajar python berbeza dari orang ke orang, terutamanya dipengaruhi oleh pengalaman pengaturcaraan sebelumnya, motivasi pembelajaran, sumber pembelajaran dan kaedah, dan irama pembelajaran. Tetapkan matlamat pembelajaran yang realistik dan pelajari terbaik melalui projek praktikal.

Python: Automasi, skrip, dan pengurusan tugasPython: Automasi, skrip, dan pengurusan tugasApr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python dan Masa: Memanfaatkan masa belajar andaPython dan Masa: Memanfaatkan masa belajar andaApr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: Permainan, GUI, dan banyak lagiPython: Permainan, GUI, dan banyak lagiApr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Arahan sembang dan cara menggunakannya
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa