Rumah  >  Artikel  >  pembangunan bahagian belakang  >  Queue模块及源码分析

Queue模块及源码分析

高洛峰
高洛峰asal
2016-11-03 17:31:181682semak imbas

    Queue模块是提供队列操作的模块,队列是线程间最常用的交换数据的形式。该模块提供了三种队列:

Queue.Queue(maxsize):先进先出,maxsize是队列的大小,其值为非正数时为无线循环队列

Queue.LifoQueue(maxsize):后进先出,相当于栈

Queue.PriorityQueue(maxsize):优先级队列。

其中LifoQueue,PriorityQueue是Queue的子类。三者拥有以下共同的方法:

qsize():返回近似的队列大小。为什么要加“近似”二字呢?因为当该值大于0的时候并不保证并发执行的时候get()方法不被阻塞,同样,对于put()方法有效。

empty():返回布尔值,队列为空时,返回True,反之返回False。

full():当设定了队列大小的时候,如果队列满了,则返回True,否则返回False。

put(item[,block[,timeout]]):向队列里添加元素item,block设置为False的时候,如果队列满了则抛出Full异常。如果block设置为True,timeout设置为None时,则会一种等到有空位的时候再添加进队列;否则会根据timeout设定的超时值抛出Full异常。

put_nowwait(item):等价与put(item,False)。block设置为False的时候,如果队列为空,则抛出Empty异常。如果block设置为True,timeout设置为None时,则会一种等到有空位的时候再添加进队列;否则会根据timeout设定的超时值抛出Empty异常。

get([block[,timeout]]):从队列中删除元素并返回该元素的值,如果timeout是一个正数,它会阻塞最多超时秒数,并且如果在该时间内没有可用的项目,则引发Empty异常。

get_nowwait():等价于get(False)

task_done():发送信号表明入列任务已完成,经常在消费者线程中用到。

join():阻塞直至队列所有元素处理完毕,然后再处理其它操作。

(一)源码分析

    Queue模块用起来很简单很简单,但我觉得有必要把该模块的相关源代码贴出来分析下,会学到不少东西,看看大神们写的代码多么美观,多么结构化模块化,再想想自己写的代码,都是泪呀,来学习学习。为了缩减篇幅,源码的注释部分被删减掉。

from time import time as _time
try:
    import threading as _threading
except ImportError:
    import dummy_threading as _threading
from collections import deque
import heapq
 
__all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue']
 
class Empty(Exception):
    "Exception raised by Queue.get(block=0)/get_nowait()."
    pass
 
class Full(Exception):
    "Exception raised by Queue.put(block=0)/put_nowait()."
    pass
 
class Queue:
    def __init__(self, maxsize=0):
        self.maxsize = maxsize
        self._init(maxsize)
        self.mutex = _threading.Lock()
        self.not_empty = _threading.Condition(self.mutex)
        self.not_full = _threading.Condition(self.mutex)
        self.all_tasks_done = _threading.Condition(self.mutex)
        self.unfinished_tasks = 
       
    def get_nowait(self):
        return self.get(False)
    def _init(self, maxsize):
        self.queue = deque()
    def _qsize(self, len=len):
        return len(self.queue)
    def _put(self, item):
        self.queue.append(item)
    def _get(self):
        return self.queue.popleft()

通过后面的几个函数分析知道,Queue对象是在collections模块的queue基础上(关于collections模块参考 Python:使用Counter进行计数统计及collections模块),加上threading模块互斥锁和条件变量封装的。

deque是一个双端队列,很适用于队列和栈。上面的Queue对象就是一个先进先出的队列,所以首先_init()函数定义了一个双端队列,然后它的定义了_put()和_get()函数,它们分别是从双端队列右边添加元素、左边删除元素,这就构成了一个先进先出队列,同理很容易想到LifoQueue(后进先出队列)的实现了,保证队列右边添加右边删除就可以。可以贴出源代码看看。

class LifoQueue(Queue):
    '''Variant of Queue that retrieves most recently added entries first.'''
 
    def _init(self, maxsize):
        self.queue = []
 
    def _qsize(self, len=len):
        return len(self.queue)
 
    def _put(self, item):
        self.queue.append(item)
 
    def _get(self):
        return self.queue.pop()

虽然它的"queue"没有用queue(),用列表也是一样的,因为列表append()和pop()操作是在最右边添加元素和删除最右边元素。

再来看看PriorityQueue,他是个优先级队列,这里用到了heapq模块的heappush()和heappop()两个函数。heapq模块对堆这种数据结构进行了模块化,可以建立这种数据结构,同时heapq模块也提供了相应的方法来对堆做操作。其中_init()函数里self.queue=[]可以看作是建立了一个空堆。heappush() 往堆中插入一条新的值 ,heappop() 从堆中弹出最小值 ,这就可以实现优先级(关于heapq模块这里这是简单的介绍)。源代码如下:

class PriorityQueue(Queue):
    '''Variant of Queue that retrieves open entries in priority order (lowest first).
 
    Entries are typically tuples of the form:  (priority number, data).
    '''
 
    def _init(self, maxsize):
        self.queue = []
 
    def _qsize(self, len=len):
        return len(self.queue)
 
    def _put(self, item, heappush=heapq.heappush):
        heappush(self.queue, item)
 
    def _get(self, heappop=heapq.heappop):
        return heappop(self.queue)

基本的数据结构分析完了,接着分析其它的部分。

mutex 是个threading.Lock()对象,是互斥锁;not_empty、 not_full 、all_tasks_done这三个都是threading.Condition()对象,条件变量,而且维护的是同一把锁对象mutex(关于threading模块中Lock对象和Condition对象可参考上篇博文Python:线程、进程与协程(2)——threading模块)。

其中:

self.mutex互斥锁:任何获取队列的状态(empty(),qsize()等),或者修改队列的内容的操作(get,put等)都必须持有该互斥锁。acquire()获取锁,release()释放锁。同时该互斥锁被三个条件变量共同维护。

 self.not_empty条件变量:线程添加数据到队列中后,会调用self.not_empty.notify()通知其它线程,然后唤醒一个移除元素的线程。

self.not_full条件变量:当一个元素被移除出队列时,会唤醒一个添加元素的线程。

self.all_tasks_done条件变量 :在未完成任务的数量被删除至0时,通知所有任务完成

 self.unfinished_tasks  : 定义未完成任务数量


再来看看主要方法:

(1)put()

源代码如下:

def put(self, item, block=True, timeout=None):
        self.not_full.acquire()                  #not_full获得锁
        try:
            if self.maxsize > 0:                 #如果队列长度有限制
                if not block:                    #如果没阻塞
                    if self._qsize() == self.maxsize:   #如果队列满了抛异常
                        raise Full
                elif timeout is None:           #有阻塞且超时为空,等待
                    while self._qsize() == self.maxsize:
                        self.not_full.wait()
                elif timeout < 0:
                    raise ValueError("&#39;timeout&#39; must be a non-negative number")
                else:        #如果有阻塞,且超时非负时,结束时间=当前时间+超时时间
                    endtime = _time() + timeout
                    while self._qsize() == self.maxsize:
                        remaining = endtime - _time()
                        if remaining <= 0.0:       #到时后,抛异常
                            raise Full
                            #如果没到时,队列是满的就会一直被挂起,直到有“位置”腾出
                        self.not_full.wait(remaining)
            self._put(item)                    #调用_put方法,添加元素
            self.unfinished_tasks += 1         #未完成任务+1
            self.not_empty.notify()             #通知非空,唤醒非空挂起的任务
        finally:
            self.not_full.release()            #not_full释放锁

    默认情况下block为True,timeout为None。如果队列满则会等待,未满则会调用_put方法将进程加入deque中(后面介绍),并且未完成任务加1还会通知队列非空。

    如果设置block参数为Flase,队列满时则会抛异常。如果设置了超时那么在时间到之前进行阻塞,时间一到抛异常。这个方法使用not_full对象进行操作。

(2)get()

源码如下:

def get(self, block=True, timeout=None):
         
        self.not_empty.acquire()                #not_empty获得锁
        try:
            if not block:                       #不阻塞时
                if not self._qsize():           #队列为空时抛异常
                    raise Empty
            elif timeout is None:               #不限时时,队列为空则会等待
                while not self._qsize():
                    self.not_empty.wait()
            elif timeout < 0:
                raise ValueError("&#39;timeout&#39; must be a non-negative number")
            else:
                endtime = _time() + timeout
                while not self._qsize():
                    remaining = endtime - _time()
                    if remaining <= 0.0:
                        raise Empty
                    self.not_empty.wait(remaining)
            item = self._get()                  #调用_get方法,移除并获得项目
            self.not_full.notify()              #通知非满
            return item                        #返回项目
        finally:
            self.not_empty.release()            #释放锁

   逻辑跟put()函数一样,参数默认情况下队列空了则会等待,否则将会调用_get方法(往下看)移除并获得一个项,最后返回这个项。这个方法使用not_empty对象进行操作。

        不过我觉得put()与get()两个函数结合起来理解比较好。not_full与not_empty代表的是两种不同操作类型的线程,not_full可以理解成is-not-full,即队列是否满了,默认是没有满,没有满时not_full这个条件变量才能获取锁,并做一些条件判断,只有符合条件才能向队列里加元素,添加成功后就会通知not_empty条件变量队列里不是空的,“我”刚刚添加进了一个元素,满足可以执行删除动作的基本条件了(队列不是空的,想想如果是空的执行删除动作就没有意义了),同时唤醒一些被挂起的执行移除动作的线程,让这些线程重新判断条件,如果条件准许就会执行删除动作,然后又通知not_full条件变量,告诉“它”队列不是满的,因为“我”刚才删除了一个元素(想想如果队列满了添加元素就添加不进呀,就没意义了),满足了添加元素的基本条件(队列不是满的),同时唤醒一些被挂起的执行添加动作的线程,这些线程又会进行条件判断,符合条件就会添加元素,否则继续挂起,依次类推,同时这样也保证了线程的安全。正与前面所说,当一个元素被移除出队列时,会唤醒一个添加元素的线程;当添加一个元素时会唤醒一个删除元素的线程。

    

(3)task_done()

源码如下:

def task_done(self):
    
        self.all_tasks_done.acquire()       #获得锁
        try:
            unfinished = self.unfinished_tasks - 1  #判断队列中一个线程的任务是否全部完成
            if unfinished <= 0:                     #是则进行通知,或在过量调用时报异常
                if unfinished < 0:
                    raise ValueError(&#39;task_done() called too many times&#39;)
                self.all_tasks_done.notify_all()
            self.unfinished_tasks = unfinished      #否则未完成任务数量-1
        finally:
            self.all_tasks_done.release()           #最后释放锁

    这个方法判断队列中一个线程的任务是否全部完成,首先会通过all_tasks_done对象获得锁,如果是则进行通知,最后释放锁。


(4)join()

源码如下:

def join(self):
 
    self.all_tasks_done.acquire()
    try:
        while self.unfinished_tasks:        #如果有未完成的任务,将调用wait()方法等待
            self.all_tasks_done.wait()
    finally:
        self.all_tasks_done.release()

阻塞方法,当队列中有未完成进程时,调用join方法来阻塞,直到他们都完成。


其它的方法都比较简单,也比较好理解,有兴趣可以去看看Queue.py里的源码,要注意的是任何获取队列的状态(empty(),qsize()等),或者修改队列的内容的操作(get,put等)都必须持有互斥锁mutex。

(二)简单例子

实现一个线程不断生成一个随机数到一个队列中

实现一个线程从上面的队列里面不断的取出奇数

实现另外一个线程从上面的队列里面不断取出偶数

import random,threading,time
from Queue import Queue
is_product = True
class Producer(threading.Thread):
    """生产数据"""
    def __init__(self, t_name, queue):
       threading.Thread.__init__(self,name=t_name)
       self.data=queue
    def run(self):
        while 1:
 
            if self.data.full():
                global is_product
                is_product = False
            else:
                if self.data.qsize() <= 7:#队列长度小于等于7时添加元素
                    is_product = True
                    for i in range(2): #每次向队列里添加两个元素
 
                        randomnum=random.randint(1,99)
                        print "%s: %s is producing %d to the queue!" % (time.ctime(), self.getName(), randomnum)
                        self.data.put(randomnum,False) #将数据依次存入队列
                        time.sleep(1)
                        print "deque length is %s"%self.data.qsize()
                else:
                    if is_product:
                        for i in range(2):  #
 
                            randomnum = random.randint(1, 99)
                            print "%s: %s is producing %d to the queue!" % (time.ctime(), self.getName(), randomnum)
                            self.data.put(randomnum,False)  # 将数据依次存入队列
                            time.sleep(1)
                            print "deque length is %s" % self.data.qsize()
                    else:
                        pass
 
        print "%s: %s finished!" %(time.ctime(), self.getName())
 
#Consumer thread
class Consumer_even(threading.Thread):
    def __init__(self,t_name,queue):
        threading.Thread.__init__(self,name=t_name)
        self.data=queue
    def run(self):
        while 1:
            if self.data.qsize() > 7:#队列长度大于7时开始取元素
                val_even = self.data.get(False)
                if val_even%2==0:
                    print "%s: %s is consuming. %d in the queue is consumed!" % (time.ctime(),self.getName(),val_even)
                    time.sleep(2)
                else:
                    self.data.put(val_even)
                    time.sleep(2)
                print "deque length is %s" % self.data.qsize()
            else:
                pass
 
 
class Consumer_odd(threading.Thread):
    def __init__(self,t_name,queue):
        threading.Thread.__init__(self, name=t_name)
        self.data=queue
    def run(self):
        while 1:
            if self.data.qsize() > 7:
                val_odd = self.data.get(False)
                if val_odd%2!=0:
                    print "%s: %s is consuming. %d in the queue is consumed!" % (time.ctime(), self.getName(), val_odd)
                    time.sleep(2)
                else:
                    self.data.put(val_odd)
                    time.sleep(2)
                print "deque length is %s" % self.data.qsize()
            else:
                pass
 
#Main thread
def main():
    queue = Queue(20)
    producer = Producer(&#39;Pro.&#39;, queue)
    consumer_even = Consumer_even(&#39;Con_even.&#39;, queue)
    consumer_odd = Consumer_odd(&#39;Con_odd.&#39;,queue)
    producer.start()
    consumer_even.start()
    consumer_odd.start()
    producer.join()
    consumer_even.join()
    consumer_odd.join()
 
if __name__ == &#39;__main__&#39;:
    main()


Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel sebelumnya:pyqt5Artikel seterusnya:Python内置函 iter