cari
Rumahpembangunan bahagian belakangTutorial Pythonpython 序列化之JSON和pickle详解

python 序列化之JSON和pickle详解

Oct 29, 2016 am 10:17 AM
javascriptjsonpicklepython

JSON模块

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。它基于ECMAScript的一个子集。 JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C、C++、Java、JavaScript、Perl、Python等)。这些特性使JSON成为理想的数据交换语言。易于人阅读和编写,同时也易于机器解析和生成(一般用于提升网络传输速率)。
JSON在python中分别由list和dict组成。

一、python类型数据和JSON数据格式互相转换

1.png

pthon 中str类型到JSON中转为unicode类型,None转为null,dict对应object

二、数据encoding和decoding

1、简单类型数据编解码

所谓简单类型就是指上表中出现的python类型。

dumps:  将对象序列化

#coding:utf-8
import json

# 简单编码===========================================
print json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
# ["foo", {"bar": ["baz", null, 1.0, 2]}]

#字典排序
print json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True)
# {"a": 0, "b": 0, "c": 0}

#自定义分隔符
print json.dumps([1,2,3,{'4': 5, '6': 7}], sort_keys=True, separators=(',',':'))
# [1,2,3,{"4":5,"6":7}]
print json.dumps([1,2,3,{'4': 5, '6': 7}], sort_keys=True, separators=('/','-'))
# [1/2/3/{"4"-5/"6"-7}]

#增加缩进,增强可读性,但缩进空格会使数据变大
print json.dumps({'4': 5, '6': 7}, sort_keys=True,indent=2, separators=(',', ': '))
# {
#   "4": 5,
#   "6": 7
# }


# 另一个比较有用的dumps参数是skipkeys,默认为False。
# dumps方法存储dict对象时,key必须是str类型,如果出现了其他类型的话,那么会产生TypeError异常,如果开启该参数,设为True的话,会忽略这个key。
data = {'a':1,(1,2):123}
print json.dumps(data,skipkeys=True)
#{"a": 1}

dump:  将对象序列化并保存到文件

#将对象序列化并保存到文件obj = ['foo', {'bar': ('baz', None, 1.0, 2)}]
with open(r"c:\json.txt","w+") as f:
   json.dump(obj,f)

loads:  将序列化字符串反序列化

import json

obj = ['foo', {'bar': ('baz', None, 1.0, 2)}]
a= json.dumps(obj)
print json.loads(a)
# [u'foo', {u'bar': [u'baz', None, 1.0, 2]}]

 load:  将序列化字符串从文件读取并反序列化

with open(r"c:\json.txt","r") as f:    print json.load(f)

三、自定义复杂数据类型编解码

例如我们碰到对象datetime,或者自定义的类对象等json默认不支持的数据类型时,我们就需要自定义编解码函数。有两种方法来实现自定义编解码。

1、方法一:自定义编解码函数

#! /usr/bin/env python
# -*- coding:utf-8 -*-
# __author__ = "TKQ"
import datetime,json

dt = datetime.datetime.now()



def time2str(obj):
    #python to json
    if isinstance(obj, datetime.datetime):
        json_str = {"datetime":obj.strftime("%Y-%m-%d %X")}
        return json_str
    return obj

def str2time(json_obj):
    #json to python
    if "datetime" in json_obj:
        date_str,time_str = json_obj["datetime"].split(' ')
        date = [int(x) for x in date_str.split('-')]
        time = [int(x) for x in time_str.split(':')]
        dt = datetime.datetime(date[0],date[1], date[2], time[0],time[1], time[2])
        return dt
    return json_obj


a = json.dumps(dt,default=time2str)
print a
# {"datetime": "2016-10-27 17:38:31"}
print json.loads(a,object_hook=str2time)
# 2016-10-27 17:38:31

2、方法二:继承JSONEncoder和JSONDecoder类,重写相关方法

#! /usr/bin/env python
# -*- coding:utf-8 -*-
# __author__ = "TKQ"
import datetime,json

dt = datetime.datetime.now()
dd = [dt,[1,2,3]]

class MyEncoder(json.JSONEncoder):
    def default(self,obj):
        #python to json
        if isinstance(obj, datetime.datetime):
            json_str = {"datetime":obj.strftime("%Y-%m-%d %X")}
            return json_str
        return obj

class MyDecoder(json.JSONDecoder):
    def __init__(self):
        json.JSONDecoder.__init__(self, object_hook=self.str2time)

    def str2time(self,json_obj):
        #json to python
        if "datetime" in json_obj:
            date_str,time_str = json_obj["datetime"].split(' ')
            date = [int(x) for x in date_str.split('-')]
            time = [int(x) for x in time_str.split(':')]
            dt = datetime.datetime(date[0],date[1], date[2], time[0],time[1], time[2])
            return dt
        return json_obj


# a = json.dumps(dt,default=time2str)
a =MyEncoder().encode(dd)
print a
# [{"datetime": "2016-10-27 18:14:54"}, [1, 2, 3]]
print MyDecoder().decode(a)
# [datetime.datetime(2016, 10, 27, 18, 14, 54), [1, 2, 3]]

pickle模块

python的pickle模块实现了python的所有数据序列和反序列化。基本上功能使用和JSON模块没有太大区别,方法也同样是dumps/dump和loads/load。cPickle是pickle模块的C语言编译版本相对速度更快。

与JSON不同的是pickle不是用于多种语言间的数据传输,它仅作为python对象的持久化或者python程序间进行互相传输对象的方法,因此它支持了python所有的数据类型。

pickle反序列化后的对象与原对象是等值的副本对象,类似与deepcopy。

dumps/dump序列化

from datetime import date

try:
    import cPickle as pickle    #python 2
except ImportError as e:
    import pickle   #python 3


src_dic = {"date":date.today(),"oth":([1,"a"],None,True,False),}
det_str = pickle.dumps(src_dic)
print det_str
# (dp1
# S'date'
# p2
# cdatetime
# date
# p3
# (S'\x07\xe0\n\x1b'
# tRp4
# sS'oth'
# p5
# ((lp6
# I1
# aS'a'
# aNI01
# I00
# tp7
# s.
with open(r"c:\pickle.txt","w") as f:
    pickle.dump(src_dic,f)

loads/load反序列化

from datetime import date

try:
    import cPickle as pickle    #python 2
except ImportError as e:
    import pickle   #python 3


src_dic = {"date":date.today(),"oth":([1,"a"],None,True,False),}
det_str = pickle.dumps(src_dic)
with open(r"c:\pickle.txt","r") as f:
    print pickle.load(f)
# {'date': datetime.date(2016, 10, 27), 'oth': ([1, 'a'], None, True, False)}

JSON和pickle模块的区别

1、JSON只能处理基本数据类型。pickle能处理所有Python的数据类型。

2、JSON用于各种语言之间的字符转换。pickle用于Python程序对象的持久化或者Python程序间对象网络传输,但不同版本的Python序列化可能还有差异。


Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Bagaimana tatasusunan digunakan dalam pengkomputeran saintifik dengan python?Bagaimana tatasusunan digunakan dalam pengkomputeran saintifik dengan python?Apr 25, 2025 am 12:28 AM

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Bagaimana anda mengendalikan versi python yang berbeza pada sistem yang sama?Bagaimana anda mengendalikan versi python yang berbeza pada sistem yang sama?Apr 25, 2025 am 12:24 AM

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Apakah beberapa kelebihan menggunakan array numpy melalui array python standard?Apakah beberapa kelebihan menggunakan array numpy melalui array python standard?Apr 25, 2025 am 12:21 AM

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation

Bagaimanakah sifat tatasusunan homogen mempengaruhi prestasi?Bagaimanakah sifat tatasusunan homogen mempengaruhi prestasi?Apr 25, 2025 am 12:13 AM

Kesan homogenitas tatasusunan pada prestasi adalah dwi: 1) homogenitas membolehkan pengkompil untuk mengoptimumkan akses memori dan meningkatkan prestasi; 2) tetapi mengehadkan kepelbagaian jenis, yang boleh menyebabkan ketidakcekapan. Singkatnya, memilih struktur data yang betul adalah penting.

Apakah beberapa amalan terbaik untuk menulis skrip python yang boleh dilaksanakan?Apakah beberapa amalan terbaik untuk menulis skrip python yang boleh dilaksanakan?Apr 25, 2025 am 12:11 AM

ToCraftExecutablePythonscripts, ikutiTheseBestPractics: 1) addAshebangline (#!/Usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3)

Bagaimanakah array numpy berbeza dari tatasusunan yang dibuat menggunakan modul array?Bagaimanakah array numpy berbeza dari tatasusunan yang dibuat menggunakan modul array?Apr 24, 2025 pm 03:53 PM

Numpyarraysarebetterfornumericationsoperationsandmulti-dimensialdata, whiletheArrayModuleissuitiableforbasic, ingatan-efisienArrays.1) numpyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2) thearrayModeMoremoremory-efficientModeMoremoremoremory-efficientModeMoremoremoremory-efficenceismemoremoremoremoremoremoremoremory-efficenceismemoremoremoremoremorem

Bagaimanakah penggunaan array Numpy berbanding dengan menggunakan array modul array di Python?Bagaimanakah penggunaan array Numpy berbanding dengan menggunakan array modul array di Python?Apr 24, 2025 pm 03:49 PM

NumpyarraysareBetterforheavynumericalcomputing, whilethearraymoduleismoresuitifFormemory-constrainedprojectswithsimpledatypes.1) numpyarraysofferversativilityandperformanceForlargedATAsetSandcomplexoperations.2)

Bagaimanakah modul CTYPES berkaitan dengan tatasusunan di Python?Bagaimanakah modul CTYPES berkaitan dengan tatasusunan di Python?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingc-stylearraysinpython.1) usectypestointerwithclibrariesforperformance.2) createec-stylearraysfornumericalcomputations.3) Passarraystocfuntionsforficientsoperations.however, becautiousofmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmem

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual