cari
Rumahpembangunan bahagian belakangTutorial PythonImplement a function to find the longest common subsequence of two strings.

Melaksanakan fungsi untuk mencari selanjutnya yang paling lama dari dua rentetan.

Untuk melaksanakan fungsi yang mendapati berikutnya yang paling lama (LCS) dari dua rentetan, kami akan menggunakan pengaturcaraan dinamik, yang merupakan pendekatan yang paling berkesan untuk masalah ini. Berikut adalah pelaksanaan langkah demi langkah di Python:

 <code class="python">def longest_common_subsequence(str1, str2): m, n = len(str1), len(str2) # Create a table to store results of subproblems dp = [[0] * (n 1) for _ in range(m 1)] # Build the dp table for i in range(1, m 1): for j in range(1, n 1): if str1[i-1] == str2[j-1]: dp[i][j] = dp[i-1][j-1] 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) # The last cell contains length of LCS return dp[m][n] # Test the function str1 = "AGGTAB" str2 = "GXTXAYB" print("Length of LCS is", longest_common_subsequence(str1, str2)) # Output: Length of LCS is 4</code>

Fungsi ini menggunakan jadual pengaturcaraan dinamik 2D untuk mengira panjang LCS antara str1 dan str2 . Kerumitan masa adalah O (m n), dan kerumitan ruang adalah O (m n), di mana m dan n adalah panjang rentetan input.

Apakah algoritma utama yang digunakan untuk menyelesaikan masalah seterusnya yang paling lama?

Algoritma utama yang digunakan untuk menyelesaikan masalah seterusnya yang paling lama adalah:

  1. Pengaturcaraan Dinamik : Ini adalah kaedah yang paling biasa digunakan dan cekap. Ia melibatkan membuat jadual untuk menyimpan hasil subproblem dan membina penyelesaiannya secara beransur -ansur. Idea asas adalah untuk mengisi matriks di mana dp[i][j] mewakili panjang LCs substrings str1[0..i-1] dan str2[0..j-1] .
  2. Rekursi : Pendekatan naif terhadap masalah LCS adalah melalui rekursi, tetapi ia tidak cekap kerana pengiraan berulang subproblem yang sama. Pendekatan rekursif mengikuti prinsip memecahkan masalah menjadi subproblem yang lebih kecil, tetapi tanpa menyimpan hasil pertengahan, ia mengakibatkan kerumitan masa eksponen.
  3. Memoisasi : Ini adalah pengoptimuman terhadap pendekatan rekursif, di mana hasil subproblem disimpan untuk mengelakkan pengiraan yang berlebihan. Memoisasi secara berkesan mengubah penyelesaian rekursif ke dalam penyelesaian pengaturcaraan dinamik, mengurangkan kerumitan masa kepada polinomial.
  4. Backtracking : Walaupun tidak biasanya digunakan semata -mata untuk menyelesaikan masalah LCS kerana ketidakcekapannya, backtracking boleh digunakan untuk membina semula LCS apabila panjangnya diketahui melalui pengaturcaraan dinamik atau memoisasi.

Bagaimanakah kecekapan fungsi seterusnya yang paling lama dapat diperbaiki?

Kecekapan fungsi seterusnya yang paling lama dapat ditingkatkan dalam beberapa cara:

  1. Pengoptimuman Ruang : Pelaksanaan asal menggunakan ruang O (M*n), tetapi mungkin untuk mengurangkan kerumitan ruang kepada O (n) dengan hanya menjejaki dua baris jadual pengaturcaraan dinamik pada bila -bila masa.

     <code class="python">def optimized_lcs(str1, str2): m, n = len(str1), len(str2) prev = [0] * (n 1) curr = [0] * (n 1) for i in range(1, m 1): for j in range(1, n 1): if str1[i-1] == str2[j-1]: curr[j] = prev[j-1] 1 else: curr[j] = max(curr[j-1], prev[j]) prev, curr = curr, prev # Swap the rows return prev[n]</code>
  2. Menggunakan algoritma Hirschberg : Jika kita perlu mencari LCS sebenar dan bukan hanya panjangnya, algoritma Hirschberg boleh digunakan untuk mencari LCS dalam ruang O (M*N) dan O (Min (M, N)), yang lebih cekap ruang daripada pendekatan pengaturcaraan dinamik tradisional.
  3. Parallelization : Pengiraan jadual pengaturcaraan dinamik boleh dipasangkan sedikit sebanyak, terutamanya jika anda bekerja dengan rentetan yang besar, dengan membahagikan kerja di kalangan pemproses atau benang.
  4. Algoritma Khusus : Untuk jenis rentetan tertentu, algoritma yang lebih khusus mungkin lebih cekap, contohnya, apabila berurusan dengan urutan DNA, algoritma bioinformatik tertentu yang dioptimumkan untuk input ini boleh digunakan.

Apakah aplikasi biasa untuk mencari seterusnya yang paling lama dalam senario dunia sebenar?

Mencari seterusnya yang paling lama adalah algoritma serba boleh yang digunakan dalam pelbagai aplikasi dunia sebenar, termasuk:

  1. Bioinformatik : Dalam biologi genetik dan molekul, LCS digunakan untuk membandingkan urutan DNA untuk mencari persamaan dan perbezaan. Sebagai contoh, ia dapat membantu menyelaraskan urutan genetik untuk mengenal pasti mutasi atau persamaan dalam spesies yang berbeza.
  2. Perbandingan teks dan kawalan versi : LCS adalah asas dalam alat yang digunakan untuk perbandingan fail, seperti alat diff dalam sistem kawalan versi seperti Git. Ia membantu dalam mengenal pasti perubahan dan menggabungkan versi kod sumber atau dokumen yang berlainan.
  3. Pengesanan Plagiarisme : Dengan mencari LCS antara dua dokumen, mungkin untuk mengenal pasti segmen umum terpanjang yang mungkin menunjukkan plagiarisme.
  4. Mampatan Data : Dalam algoritma mampatan data, LCS boleh digunakan untuk mengenal pasti urutan data berlebihan yang boleh diwakili dengan lebih cekap.
  5. Pengiktirafan Ucapan : LCS boleh digunakan untuk menyelaraskan dan membandingkan urutan perkataan yang dituturkan, yang berguna dalam meningkatkan ketepatan penukaran ucapan-ke-teks.
  6. Pemprosesan bahasa semulajadi : LCS digunakan dalam tugas NLP seperti pengukuran persamaan teks, yang boleh digunakan untuk pengoptimuman enjin carian, analisis sentimen, dan terjemahan mesin.

Aplikasi ini memanfaatkan kuasa LC untuk menyelesaikan masalah yang rumit dengan mengenal pasti persamaan dengan urutan, dengan itu memberikan pandangan yang berharga dan memudahkan teknik pemprosesan maju.

Atas ialah kandungan terperinci Implement a function to find the longest common subsequence of two strings.. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python dan Masa: Memanfaatkan masa belajar andaPython dan Masa: Memanfaatkan masa belajar andaApr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: Permainan, GUI, dan banyak lagiPython: Permainan, GUI, dan banyak lagiApr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python vs C: Aplikasi dan kes penggunaan dibandingkanPython vs C: Aplikasi dan kes penggunaan dibandingkanApr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Rancangan Python 2 jam: Pendekatan yang realistikRancangan Python 2 jam: Pendekatan yang realistikApr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python: meneroka aplikasi utamanyaPython: meneroka aplikasi utamanyaApr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Berapa banyak python yang boleh anda pelajari dalam 2 jam?Berapa banyak python yang boleh anda pelajari dalam 2 jam?Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam?Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam?Apr 02, 2025 am 07:18 AM

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah?Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah?Apr 02, 2025 am 07:15 AM

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini