model bahasa besar multimodal (LLMS): merapatkan jurang antara teks dan penglihatan
Dunia kita berpengalaman melalui pelbagai deria - bahasa, penglihatan, bau, dan sentuhan - membolehkan kita memahami persekitaran kita. Manusia sangat mahir dalam penalaran linguistik dan memori visual. Sebagai model generatif AI (genai), penyelidik memberi tumpuan kepada menggabungkan multimodaliti untuk mengembangkan keupayaan mereka. Model bahasa besar tradisional (LLM) terhad kepada input dan output teks, mengabaikan modaliti lain seperti imej, video, atau audio. Walaupun LLMS cemerlang dalam tugas -tugas seperti menjawab soalan, ringkasan, terjemahan, dan penjanaan kod, mengintegrasikan modaliti lain (mewujudkan LLM multimodal) membuka potensi yang besar. Sebagai contoh, menggabungkan data teks dan imej membolehkan aplikasi seperti menjawab soalan visual, segmentasi imej, dan pengesanan objek. Menambah video meningkatkan keupayaan untuk analisis media canggih.
Jadual Kandungan
- Pengenalan kepada Multimodal LLMS
- dataset dan preprocessing
- Aplikasi Multimodal LLMS
- Captioning Image
- Pengekstrakan maklumat
- Tafsiran Visual dan Penalaran
- Pengiktirafan Watak Optik (OCR)
- Pengesanan dan Segmentasi Objek
- Senibina model bahasa penglihatan yang besar (LVLMS)
- dua menara VLMS
- Dua kaki VLMS
- vlms dengan pengekod imej, pengekod teks & decoder
- VLMS dengan arsitektur pengekod-decoder
- Kesimpulan
Pengenalan kepada Multimodal LLMS
Genai merangkumi model pembelajaran mesin yang mampu menghasilkan kandungan baru. Model teks-ke-teks, sebagai contoh, menjana teks dari input teks. Walau bagaimanapun, memperluaskan LLM dengan modaliti lain membuka pintu kepada teks-ke-ke-video, teks-video, teks-ke-ucapan, imej-ke-imej, dan aplikasi imej-ke-video. Ini dikenali sebagai model multimodal besar (LLM multimodal). Latihan model ini melibatkan dataset besar yang mengandungi teks dan modaliti lain, membolehkan algoritma mempelajari hubungan antara semua jenis input. Secara asasnya, model -model ini tidak terhad kepada jenis input/output tunggal; Mereka menyesuaikan diri dengan pelbagai modaliti. Ini menyediakan sistem dengan pemahaman yang lebih kaya tentang input deria.
Artikel ini dibahagikan kepada dua bahagian: yang pertama meneroka aplikasi dan seni bina LLM multimodal, sementara yang kedua (tidak termasuk di sini) memperincikan latihan model penglihatan yang lebih kecil.
dataset dan preprocessing
Menggabungkan jenis data yang berbeza untuk membuat LLM multimodal memberikan cabaran, terutamanya apabila mengendalikan data 1D, 2D, dan 3D secara serentak. Ini memerlukan pendekatan berturut-turut, langkah demi langkah dengan kurasi data yang teliti untuk mengoptimumkan prestasi model.
Perbincangan ini memberi tumpuan kepada teks dan imej. Imej dan video, tidak seperti teks, bervariasi dalam saiz dan resolusi, yang memerlukan pra -proses yang mantap untuk menyeragamkan input. Imej, video, arahan, dan metadata mesti bersedia untuk memudahkan proses pemikiran yang koheren dan konsistensi logik semasa kesimpulan. Model yang dilatih dalam teks, imej, dan data video dipanggil model bahasa penglihatan yang besar (LVLMS).
Aplikasi Multimodal LLMS
Imej berikut (dari kertas QWEN2-VL) menggambarkan model penglihatan berdasarkan QWEN2 LLM, mampu mengendalikan pelbagai tugas visual.
Bahagian berikut terperinci aplikasi khusus (contoh kod yang ditinggalkan untuk keringkasan):
1. Tajuk Imej: Menjana Penerangan Teks Imej.
2. Pengekstrakan maklumat: Mendapatkan ciri khusus atau titik data dari imej (mis., Warna objek, teks).
3. Tafsiran & Penalaran Visual: Menganalisis imej dan melaksanakan tugas penalaran berdasarkan maklumat visual.
4. Pengiktirafan watak optik (OCR): Mengekstrak teks dari imej.
5. Pengesanan & Segmentasi Objek: Mengenalpasti dan mengklasifikasikan objek dalam imej, berpotensi membahagikannya ke kawasan yang berbeza.
Senibina model bahasa penglihatan yang besar (LVLMS)
Matlamat LVLMS adalah untuk menyatukan ciri dari imej, video, dan teks. Beberapa seni bina sedang diterokai untuk pra-latihan:
1. Dua menara VLM: Imej dan teks dikodkan secara berasingan dan dilatih dengan objektif bersama untuk menyelaraskan maklumat dari kedua-dua modaliti.
2. VLM dua kaki: Sama seperti dua menara, tetapi termasuk lapisan gabungan untuk menggabungkan ciri-ciri imej dan teks sebelum objektif bersama.
4. VLMS dengan arsitektur pengekod-decoder: Imej diproses oleh pengekod, teks oleh penyahkod, dengan ciri-ciri yang digabungkan (melalui concatenation atau silang) sebelum penyahkodan.
LLM multimodal, terutamanya VLM, dilatih pada dataset teks imej untuk merapatkan jurang antara data visual dan teks. Mereka cemerlang dalam tugas visual, tetapi mencapai prestasi tinggi memerlukan dataset yang besar dan sumber pengiraan. Walaupun mampu banyak tugas visual, batasan kekal dalam penalaran kompleks dan pengekstrakan data. Penyelidikan dan pembangunan lebih lanjut adalah penting untuk mengatasi batasan -batasan ini dan membuka kunci potensi penuh LLM multimodal.
rujukan (senarai yang disediakan dalam teks asal)
Atas ialah kandungan terperinci Memperkasakan AI dengan Deria: Perjalanan ke LLM Multimodal Bahagian 1. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!
![Tidak boleh menggunakan chatgpt! Menjelaskan sebab dan penyelesaian yang boleh diuji dengan segera [terbaru 2025]](https://img.php.cn/upload/article/001/242/473/174717025174979.jpg?x-oss-process=image/resize,p_40)
Chatgpt tidak boleh diakses? Artikel ini menyediakan pelbagai penyelesaian praktikal! Ramai pengguna mungkin menghadapi masalah seperti tidak dapat diakses atau tindak balas yang perlahan apabila menggunakan chatgpt setiap hari. Artikel ini akan membimbing anda untuk menyelesaikan masalah ini langkah demi langkah berdasarkan situasi yang berbeza. Punca ketidakmampuan dan penyelesaian masalah awal Chatgpt Pertama, kita perlu menentukan sama ada masalah itu berada di sisi pelayan Openai, atau masalah rangkaian atau peranti pengguna sendiri. Sila ikuti langkah di bawah untuk menyelesaikan masalah: Langkah 1: Periksa status rasmi Openai Lawati halaman Status Openai (status.openai.com) untuk melihat sama ada perkhidmatan ChATGPT berjalan secara normal. Sekiranya penggera merah atau kuning dipaparkan, ini bermakna terbuka

Pada 10 Mei 2025, ahli fizik MIT Max Tegmark memberitahu The Guardian bahawa AI Labs harus mencontohi kalkulus ujian triniti Oppenheimer sebelum melepaskan kecerdasan super buatan. "Penilaian saya ialah 'Compton Constant', kebarangkalian perlumbaan

Teknologi penciptaan muzik AI berubah dengan setiap hari berlalu. Artikel ini akan menggunakan model AI seperti CHATGPT sebagai contoh untuk menerangkan secara terperinci bagaimana menggunakan AI untuk membantu penciptaan muzik, dan menerangkannya dengan kes -kes sebenar. Kami akan memperkenalkan bagaimana untuk membuat muzik melalui Sunoai, AI Jukebox pada muka yang memeluk, dan perpustakaan Python Music21. Dengan teknologi ini, semua orang boleh membuat muzik asli dengan mudah. Walau bagaimanapun, perlu diperhatikan bahawa isu hak cipta kandungan AI yang dihasilkan tidak boleh diabaikan, dan anda mesti berhati-hati apabila menggunakannya. Mari kita meneroka kemungkinan AI yang tidak terhingga dalam bidang muzik bersama -sama! Ejen AI terbaru Terbuka "Openai Deep Research" memperkenalkan: [Chatgpt] Ope

Kemunculan CHATGPT-4 telah memperluaskan kemungkinan aplikasi AI. Berbanding dengan GPT-3.5, CHATGPT-4 telah meningkat dengan ketara. Ia mempunyai keupayaan pemahaman konteks yang kuat dan juga dapat mengenali dan menghasilkan imej. Ia adalah pembantu AI sejagat. Ia telah menunjukkan potensi yang besar dalam banyak bidang seperti meningkatkan kecekapan perniagaan dan membantu penciptaan. Walau bagaimanapun, pada masa yang sama, kita juga harus memberi perhatian kepada langkah berjaga -jaga dalam penggunaannya. Artikel ini akan menerangkan ciri-ciri CHATGPT-4 secara terperinci dan memperkenalkan kaedah penggunaan yang berkesan untuk senario yang berbeza. Artikel ini mengandungi kemahiran untuk memanfaatkan sepenuhnya teknologi AI terkini, sila rujuknya. Ejen AI Terbuka Terbuka, sila klik pautan di bawah untuk butiran "Penyelidikan Deep Openai"

App ChatGPT: Melepaskan kreativiti anda dengan pembantu AI! Panduan pemula Aplikasi CHATGPT adalah pembantu AI yang inovatif yang mengendalikan pelbagai tugas, termasuk menulis, terjemahan, dan menjawab soalan. Ia adalah alat dengan kemungkinan tidak berkesudahan yang berguna untuk aktiviti kreatif dan pengumpulan maklumat. Dalam artikel ini, kami akan menerangkan dengan cara yang mudah difahami untuk pemula, dari cara memasang aplikasi telefon pintar ChATGPT, kepada ciri-ciri yang unik untuk aplikasi seperti fungsi input suara dan plugin, serta mata yang perlu diingat apabila menggunakan aplikasi. Kami juga akan melihat dengan lebih dekat sekatan plugin dan penyegerakan konfigurasi peranti-ke-peranti

Chatgpt Versi Cina: Buka kunci pengalaman baru dialog Cina AI Chatgpt popular di seluruh dunia, adakah anda tahu ia juga menawarkan versi Cina? Alat AI yang kuat ini bukan sahaja menyokong perbualan harian, tetapi juga mengendalikan kandungan profesional dan serasi dengan Cina yang mudah dan tradisional. Sama ada pengguna di China atau rakan yang belajar bahasa Cina, anda boleh mendapat manfaat daripadanya. Artikel ini akan memperkenalkan secara terperinci bagaimana menggunakan versi CHATGPT Cina, termasuk tetapan akaun, input perkataan Cina, penggunaan penapis, dan pemilihan pakej yang berbeza, dan menganalisis potensi risiko dan strategi tindak balas. Di samping itu, kami juga akan membandingkan versi CHATGPT Cina dengan alat AI Cina yang lain untuk membantu anda memahami lebih baik kelebihan dan senario aplikasinya. Perisikan AI Terbuka Terbuka

Ini boleh dianggap sebagai lonjakan seterusnya ke hadapan dalam bidang AI generatif, yang memberi kita chatgpt dan chatbots model bahasa besar yang lain. Daripada hanya menjawab soalan atau menghasilkan maklumat, mereka boleh mengambil tindakan bagi pihak kami, Inter

Teknik pengurusan akaun berganda yang cekap menggunakan CHATGPT | Penjelasan menyeluruh tentang cara menggunakan perniagaan dan kehidupan peribadi! ChatGPT digunakan dalam pelbagai situasi, tetapi sesetengah orang mungkin bimbang untuk menguruskan pelbagai akaun. Artikel ini akan menerangkan secara terperinci bagaimana untuk membuat pelbagai akaun untuk chatgpt, apa yang perlu dilakukan apabila menggunakannya, dan bagaimana untuk mengendalikannya dengan selamat dan cekap. Kami juga meliputi perkara penting seperti perbezaan dalam perniagaan dan penggunaan peribadi, dan mematuhi syarat penggunaan OpenAI, dan memberikan panduan untuk membantu anda menggunakan pelbagai akaun. Terbuka


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

Dreamweaver CS6
Alat pembangunan web visual

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan
