Openai adalah yang pertama memperkenalkan model penaakulan seperti O1 dan O1-Mini, tetapi adakah ia satu-satunya pemain dalam permainan? Bukan dengan tembakan panjang! LLM Cina seperti Deepseek, Qwen, dan sekarang Kimi melangkah untuk mencabar OpenAI dengan menyampaikan keupayaan yang sama dengan harga yang lebih berpatutan. Selepas debut Deepseek yang mengagumkan, giliran Kimi Ai bersinar dengan model Kimi K1.5 yang baru. Dalam artikel ini, kami akan menguji Kimi K1.5 terhadap Openai O1 pada tugas yang sama dan melihat mana yang lebih baik!
Jadual Kandungan- Apa itu Kimi K1.5? Carian Web
-
Tugas 5: Analisis Imej - Hasil Akhir: Kimi K1.5 vs OpenAI O1
- Kesimpulan
- Sila ambil perhatian: Sila ambil perhatian: Kimi K1.5 adalah percuma, sambil mengakses Chatgpt Plus untuk O1 dan O1-Mini berharga $ 20. Sebelum menyelam ke dalam tugas, mari kita bandingkan dua model.
- Apa itu kimi k1.5?
- Kimi K1.5 adalah LLM berbilang modal oleh Moonshot AI yang dilatih dengan pembelajaran tetulang (RL) dan direka untuk cemerlang dalam pelbagai tugas penalaran di seluruh teks, penglihatan, dan pengekodan. Dilancarkan baru -baru ini, Kimi K1.5 dengan cepat mendapat perhatian untuk prestasi yang mengagumkan, yang sepadan dengan keupayaan model Openai O1 tanpa pratonton atau akhiran mini.
- Ciri Utama
carian web masa nyata di seluruh 100 laman web
menganalisis sehingga 50 fail (pdfs, docs, ppts, imej) dengan mudahpenalaran katil maju, tersedia tanpa kos
pemahaman imej yang dipertingkatkan, melampaui pengekstrakan teks asas
- Juga baca:
- Openai O1: Siri Model Baru Terbuka
- O1-Mini: Model yang mengubah permainan untuk STEM dan penalaran
- Kimi K1.5 vs Openai O1 dan O1-Mini
- Kimi K1.5 sepadan dengan Openai's O1 dan O1-Mini dalam tugas-tugas yang panjang dan mengatasi GPT-4O dan Claude Sonnet 3.5 dalam tugas pendek. Keupayaan berbilang modal, terutamanya dalam penalaran visual, meletakkannya sebagai pesaing yang kuat untuk model OpenAI. Penggunaan teknik latihan RL, resipi data multi-modal, dan pengoptimuman infrastruktur telah menjadi penting dalam mencapai hasil ini.
K1.5 Model Long-Cot: Memajukan Penalaran Multi-Modal
Model Kimi K1.5 Long-Cot mencapai prestasi canggih (SOTA) melalui kombinasi skala konteks panjang, kaedah pengoptimuman dasar yang lebih baik, dan pembelajaran tetulang teks-teks (RL). Tidak seperti model bahasa tradisional pretraining, yang bergantung kepada ramalan yang akan datang dan dibatasi oleh data latihan yang ada, Kimi K1.5 memanfaatkan RL untuk skala data latihannya dengan belajar untuk meneroka dengan ganjaran. Pendekatan ini mewujudkan rangka kerja RL yang sederhana namun berkesan, mengelakkan teknik kompleks seperti carian atau fungsi nilai pokok Monte Carlo.
- Penalaran matematik : skor 96.2 pada Math-500 dan 77.5 pada AIME 2024, yang sepadan dengan model Openai's O1 dan O1-Mini.
- Pengaturcaraan : persentil ke -94 pada codeforces, cemerlang dalam pengaturcaraan kompetitif.
- penalaran visual : 74.9 pada Mathvista, mempamerkan integrasi multi-modal yang kuat.
K1.5 Model pendek-cot: Kecekapan dan Prestasi
Model pendek-cot membina kejayaan model long-cot, menggunakan kaedah long2short yang berkesan untuk menyaring teknik-teknik yang panjang ke dalam rangka kerja yang lebih efisien. Pendekatan ini menggabungkan penalaan halus, pembelajaran tetulang, dan penyulingan lama ke pendek, memberikan alasan yang cepat dan tepat untuk tugas-tugas konteks pendek.
Pencapaian yang ketara termasuk:
- Penalaran matematik
- : skor 94.6 pada Math-500 dan 60.8 pada AIME 2024, mengatasi model pendek yang sedia ada seperti GPT-4O dan Claude Sonnet 3.5 hingga 550%. Pengaturcaraan : 47.3 Pada LiveCodeBench, cemerlang dalam penjanaan kod dan tugas debug.
- Pemahaman Bahasa Semulajadi : Berkesan untuk aplikasi masa nyata seperti chatbots dan pembantu maya.
- Teknik penyulingan lama, termasuk penggabungan model dan pensampelan penolakan terpendek, memastikan prestasi tinggi dengan kos pengiraan yang dikurangkan, menjadikan model pendek-cot sangat cekap. untuk mengetahui lebih lanjut, anda boleh menyemak kertas penyelidikan mereka di sini!
Sekarang, mari kita menilai Kimi K1.5 dan Openai O1 pada arahan yang sama!
tugas 1: teka -teki zebra
prompt:
Selesaikan teka -teki zebra ini dengan betul.
Openai O1: ❌ | Kimi K1.5: ❌ tugas 2: penalaran logik Anda berjalan ke bilik dan melihat katil. Di atas katil terdapat dua anjing, empat kucing, zirafah, lima ekor lembu, dan itik. Terdapat juga tiga kerusi dan meja. Berapa banyak kaki di lantai?
Respons Openai O1: KIMI K1.5 Respons:
keputusan:
Tugas 3: Buat laman HTML
prompt:
Respons Openai O1:
Openai O1: ❌ | Kimi K1.5: ✅ tugas 4: carian web
Respons Openai O1: Artikel "Panduan Komprehensif untuk Membina Sistem Rag Agentik dengan Langgraph" menggariskan proses membina pangkalan data vektor untuk data Wikipedia sebagai sebahagian daripada mewujudkan sistem RAG yang agentik. Berikut adalah langkah utama yang diringkaskan: keputusan:
Openai O1: ❌ | Kimi K1.5: ✅
Imej menunjukkan skema yang sangat mudah dipermudahkan dari pusat data di ruang angkasa, dengan beberapa anggapan yang memudahkan yang memerlukan justifikasi. Tugas -tugas yang lebih rendah dari kawasan permukaan radiator yang diperlukan untuk pusat data.
Imej input:
1. Input kuasa dan penjanaan haba:
Di ruang angkasa, tidak ada penyejukan konvensional atau konduktif kepada pemindahan haba radiasi yang sama. Oleh itu, mod utama penolakan haba adalah radiasi terma dari permukaan radiator ke ruang dalam.
Anggapkan radiator dibina dengan permukaan emissivity tinggi, Sayε = 0.9 = 0.9. Ini adalah munasabah untuk permukaan yang disalut dengan cat atau bahan-bahan emis yang tinggi. Untuk terikat yang lebih rendah di kawasan yang diperlukan, kami menganggap keadaan yang ideal:
Untuk mengendalikan matahari dan ruang yang mendalam dalam pengurusan terma, pusat data harus dilindungi dari cahaya matahari langsung menggunakan cahaya matahari atau diposisikan di lokasi di mana ia tidak terdedah kepada matahari, seperti sisi gelap planet atau bulan. Radiator mesti direka untuk memancarkan haba dengan cekap ke ruang kosong, yang sangat sejuk.
766 meter persegi
Respons Openai O1:
Collector Position
Nationality
Lot
Amount Spent
Shirt Color
Collector #1
Portuguese
Toy
Unknown
Blue
Collector #2
Japanese
Lot 40
0,000
Purple
Collector #3
Italian
Lot 30
0,000
Pink
Collector #4
Canadian
Unknown
0,000
Yellow
Collector #5
Unknown
Unknown
0,000
Unknown
Butiran Pemungut
Tanggapan yang disediakan oleh OpenAI O1 adalah tidak tepat. Jadual yang dihasilkan tidak mematuhi format yang diperlukan dalam soalan, menjadikan respons tidak boleh dipercayai. Sebaliknya, Kimi K1.5 memberikan respons dalam format yang betul seperti soalan, tetapi kandungan jawapan itu sendiri tidak betul.
prompt:
Pemerhatian:
Jawapan yang betul:
Openai O1 mengambil masa terlalu lama untuk menghasilkan respons. Walaupun pengiraan adalah betul dan termasuk penjelasan terperinci, ia gagal menyumbang kaki manusia di atas lantai, membuat jawapannya tidak betul. Sebaliknya, Kimi K1.5 menyediakan jawapan yang betul dalam masa yang kurang. Buat halaman HTML yang mudah dengan butang yang mengubah warna latar belakang menjadi merah jambu apabila diklik dengan beberapa confetti
.
Pemerhatian: Kedua -dua model mematuhi prompt dan memberikan respons yang betul. Dari segi rupa dan fungsi laman web, Kimi K1.5 melakukan pekerjaan yang lebih baik!
keputusan:
Mata Utama untuk meringkaskan proses membina pangkalan data vektor untuk data Wikipedia:
KIMI K1.5 Respons:
Pemerhatian:
menguji retriever :
menguji retriever dengan pertanyaan sampel untuk memastikan ia mengembalikan dokumen yang relevan.
output Kimi K1.5 cemerlang dengan menyediakan langkah -langkah pelaksanaan yang terperinci dan tindakan dengan parameter teknikal tertentu dan keperluan perpustakaan. Ia mengimbangi kedalaman yang komprehensif dengan organisasi yang jelas, menerangkan alasan di sebalik setiap langkah, dan dengan berkesan menghubungkan proses teknikal ke matlamat yang lebih luas untuk membina sistem RAG yang agentik.
prompt:
di bawah adalah proses penalaran langkah demi langkah dengan andaian yang jelas menyatakan dengan jelas, justifikasi, dan penerapan undang-undang termodinamik pertama. Hasil akhir akan menjadi terikat yang lebih rendah pada kawasan radiator yang diperlukan untuk menghilangkan 1 GW haba yang dihasilkan oleh pusat data berasaskan ruang.
Untuk menganggarkan batas bawah kawasan permukaan radiator yang diperlukan untuk pusat data di ruang angkasa, saya mulakan dengan menggunakan undang-undang Stefan-Boltzmann, yang menggambarkan kuasa yang dipancarkan oleh permukaan:
Pemerhatian:
Respons Kimi K1.5 lebih unggul kerana beberapa sebab. Ia menunjukkan penalaran matematik yang jelas melalui pendekatan langkah demi langkah, bermula dengan persamaan undang-undang Stefan-Boltzmann asas. Kimi jelas mentakrifkan semua pembolehubah dan nilai mereka, menunjukkan proses matematik penyelesaian untuk kawasan radiator, dan menyediakan hasil berangka konkrit sebanyak 766 meter persegi. Penjelasan termasuk justifikasi yang jelas untuk strategi pengurusan terma, pertimbangan praktikal seperti meletakkan radiator di sisi gelap planet, dan sambungan langsung kepada undang-undang termodinamik pertama dengan aplikasi dunia nyata. Tanggapan ini disimpulkan dengan nombor tertentu dan cadangan yang boleh diambil tindakan.
Openai O1: ❌ | Kimi K1.5: ✅
Hasil tugas
Juga baca: Kimi K1.5 vs Deepseek R1: Pertempuran LLM Cina Terbaik
Task
Winner
Zebra Puzzle
Neither
Logical Reasoning
Kimi k1.5
Create an HTML Site
Kimi k1.5
Web Search
Kimi k1.5
Image Analysis
Kimi k1.5
Model percuma seperti Kimi K1.5 dan DeepSeek R1 mencabar dominasi Openai O1, yang menawarkan prestasi unggul dalam penalaran, pengekodan, dan tugas berbilang modal tanpa sebarang kos. Dengan Kimi K1.5 mengatasi OpenAI dalam tanda aras utama dan DeepSeek R1 yang cemerlang dalam cabaran pengekodan, membayar $ 20/bulan untuk Openai O1 masih dibenarkan? Beritahu kami di bahagian komen di bawah!
Atas ialah kandungan terperinci Kimi K1.5 vs Openai O1: Model penalaran yang lebih baik?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!
![Tidak boleh menggunakan chatgpt! Menjelaskan sebab dan penyelesaian yang boleh diuji dengan segera [terbaru 2025]](https://img.php.cn/upload/article/001/242/473/174717025174979.jpg?x-oss-process=image/resize,p_40)
Chatgpt tidak boleh diakses? Artikel ini menyediakan pelbagai penyelesaian praktikal! Ramai pengguna mungkin menghadapi masalah seperti tidak dapat diakses atau tindak balas yang perlahan apabila menggunakan chatgpt setiap hari. Artikel ini akan membimbing anda untuk menyelesaikan masalah ini langkah demi langkah berdasarkan situasi yang berbeza. Punca ketidakmampuan dan penyelesaian masalah awal Chatgpt Pertama, kita perlu menentukan sama ada masalah itu berada di sisi pelayan Openai, atau masalah rangkaian atau peranti pengguna sendiri. Sila ikuti langkah di bawah untuk menyelesaikan masalah: Langkah 1: Periksa status rasmi Openai Lawati halaman Status Openai (status.openai.com) untuk melihat sama ada perkhidmatan ChATGPT berjalan secara normal. Sekiranya penggera merah atau kuning dipaparkan, ini bermakna terbuka

Pada 10 Mei 2025, ahli fizik MIT Max Tegmark memberitahu The Guardian bahawa AI Labs harus mencontohi kalkulus ujian triniti Oppenheimer sebelum melepaskan kecerdasan super buatan. "Penilaian saya ialah 'Compton Constant', kebarangkalian perlumbaan

Teknologi penciptaan muzik AI berubah dengan setiap hari berlalu. Artikel ini akan menggunakan model AI seperti CHATGPT sebagai contoh untuk menerangkan secara terperinci bagaimana menggunakan AI untuk membantu penciptaan muzik, dan menerangkannya dengan kes -kes sebenar. Kami akan memperkenalkan bagaimana untuk membuat muzik melalui Sunoai, AI Jukebox pada muka yang memeluk, dan perpustakaan Python Music21. Dengan teknologi ini, semua orang boleh membuat muzik asli dengan mudah. Walau bagaimanapun, perlu diperhatikan bahawa isu hak cipta kandungan AI yang dihasilkan tidak boleh diabaikan, dan anda mesti berhati-hati apabila menggunakannya. Mari kita meneroka kemungkinan AI yang tidak terhingga dalam bidang muzik bersama -sama! Ejen AI terbaru Terbuka "Openai Deep Research" memperkenalkan: [Chatgpt] Ope

Kemunculan CHATGPT-4 telah memperluaskan kemungkinan aplikasi AI. Berbanding dengan GPT-3.5, CHATGPT-4 telah meningkat dengan ketara. Ia mempunyai keupayaan pemahaman konteks yang kuat dan juga dapat mengenali dan menghasilkan imej. Ia adalah pembantu AI sejagat. Ia telah menunjukkan potensi yang besar dalam banyak bidang seperti meningkatkan kecekapan perniagaan dan membantu penciptaan. Walau bagaimanapun, pada masa yang sama, kita juga harus memberi perhatian kepada langkah berjaga -jaga dalam penggunaannya. Artikel ini akan menerangkan ciri-ciri CHATGPT-4 secara terperinci dan memperkenalkan kaedah penggunaan yang berkesan untuk senario yang berbeza. Artikel ini mengandungi kemahiran untuk memanfaatkan sepenuhnya teknologi AI terkini, sila rujuknya. Ejen AI Terbuka Terbuka, sila klik pautan di bawah untuk butiran "Penyelidikan Deep Openai"

App ChatGPT: Melepaskan kreativiti anda dengan pembantu AI! Panduan pemula Aplikasi CHATGPT adalah pembantu AI yang inovatif yang mengendalikan pelbagai tugas, termasuk menulis, terjemahan, dan menjawab soalan. Ia adalah alat dengan kemungkinan tidak berkesudahan yang berguna untuk aktiviti kreatif dan pengumpulan maklumat. Dalam artikel ini, kami akan menerangkan dengan cara yang mudah difahami untuk pemula, dari cara memasang aplikasi telefon pintar ChATGPT, kepada ciri-ciri yang unik untuk aplikasi seperti fungsi input suara dan plugin, serta mata yang perlu diingat apabila menggunakan aplikasi. Kami juga akan melihat dengan lebih dekat sekatan plugin dan penyegerakan konfigurasi peranti-ke-peranti

Chatgpt Versi Cina: Buka kunci pengalaman baru dialog Cina AI Chatgpt popular di seluruh dunia, adakah anda tahu ia juga menawarkan versi Cina? Alat AI yang kuat ini bukan sahaja menyokong perbualan harian, tetapi juga mengendalikan kandungan profesional dan serasi dengan Cina yang mudah dan tradisional. Sama ada pengguna di China atau rakan yang belajar bahasa Cina, anda boleh mendapat manfaat daripadanya. Artikel ini akan memperkenalkan secara terperinci bagaimana menggunakan versi CHATGPT Cina, termasuk tetapan akaun, input perkataan Cina, penggunaan penapis, dan pemilihan pakej yang berbeza, dan menganalisis potensi risiko dan strategi tindak balas. Di samping itu, kami juga akan membandingkan versi CHATGPT Cina dengan alat AI Cina yang lain untuk membantu anda memahami lebih baik kelebihan dan senario aplikasinya. Perisikan AI Terbuka Terbuka

Ini boleh dianggap sebagai lonjakan seterusnya ke hadapan dalam bidang AI generatif, yang memberi kita chatgpt dan chatbots model bahasa besar yang lain. Daripada hanya menjawab soalan atau menghasilkan maklumat, mereka boleh mengambil tindakan bagi pihak kami, Inter

Teknik pengurusan akaun berganda yang cekap menggunakan CHATGPT | Penjelasan menyeluruh tentang cara menggunakan perniagaan dan kehidupan peribadi! ChatGPT digunakan dalam pelbagai situasi, tetapi sesetengah orang mungkin bimbang untuk menguruskan pelbagai akaun. Artikel ini akan menerangkan secara terperinci bagaimana untuk membuat pelbagai akaun untuk chatgpt, apa yang perlu dilakukan apabila menggunakannya, dan bagaimana untuk mengendalikannya dengan selamat dan cekap. Kami juga meliputi perkara penting seperti perbezaan dalam perniagaan dan penggunaan peribadi, dan mematuhi syarat penggunaan OpenAI, dan memberikan panduan untuk membantu anda menggunakan pelbagai akaun. Terbuka


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Dreamweaver Mac版
Alat pembangunan web visual

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod
