Rumah >Peranti teknologi >AI >Meningkatkan Keupayaan Carian Imej Menggunakan Siglip 2
siglip 2: merevolusikan carian imej dengan pengekodan bahasa penglihatan yang dipertingkatkan
Pengambilan imej yang cekap dan tepat adalah penting untuk pengurusan aset digital, e-dagang, dan media sosial. Siglip 2 Google Deepmind (kehilangan sigmoid untuk pra-latihan imej bahasa) adalah pengekod bahasa penglihatan berbilang bahasa yang direka untuk meningkatkan persamaan dan carian imej dengan ketara. Senibina inovatifnya meningkatkan pemahaman semantik dan cemerlang dalam klasifikasi sifar-tembakan dan pengambilan teks imej, melampaui model terdahulu dalam mengekstrak perwakilan visual yang bermakna. Ini dicapai melalui pendekatan latihan bersatu yang menggabungkan pembelajaran sendiri dan data yang pelbagai.
Jadual Kandungan
pra-latihan imej bahasa kontrasif (klip)
komponen teras klipKlip, yang diperkenalkan oleh OpenAI pada tahun 2021, adalah model multimodal terobosan yang menjembatani visi komputer dan pemprosesan bahasa semulajadi. Ia mempelajari ruang perwakilan bersama untuk imej dan teks, membolehkan tugas-tugas seperti klasifikasi imej sifar dan pengambilan teks imej.
Ketahui lebih lanjut: Klip Vit-L14: Keajaiban multimodal untuk klasifikasi imej sifar-shot
komponen teras klip Klip terdiri daripada pengekod teks, pengekod imej, dan mekanisme pembelajaran yang kontras. Mekanisme ini menyelaraskan perwakilan imej dan teks dengan memaksimumkan persamaan untuk pasangan yang sepadan dan meminimumkannya untuk pasangan yang tidak sesuai. Latihan melibatkan dataset besar pasangan teks imej.
Klip menggunakan encoder untuk menghasilkan embeddings untuk imej dan teks. Skor kesamaan (produk dot) mengukur persamaan antara embeddings ini. Fungsi softmax menghasilkan taburan kebarangkalian untuk setiap pasangan teks imej.
batasan klip
Batasan klip SIGLIP Google dengan menggunakan fungsi kerugian berasaskan sigmoid. Ini beroperasi secara bebas pada setiap pasangan teks imej, meningkatkan kecekapan dan ketepatan.
siglip 2: kemajuan atas siglip
siglip 2 dengan ketara mengatasi siglip dalam klasifikasi sifar-shot, pengambilan teks imej, dan pengekstrakan perwakilan visual. Ciri utama ialah varian Resolusi Dinamik (NAFLEX).
Membina sistem pengambilan imej dengan SIGLIP 2 dan analisis perbandingan dengan SIGLIP
(Bahagian ini akan mengandungi kod python dan penjelasan untuk membina sistem pengambilan imej, sama dengan yang asal, tetapi dengan kejelasan yang lebih baik dan kod yang berpotensi dipermudahkan untuk keringkasan. Ujian pengambilan praktikal
(Bahagian ini akan merangkumi hasil ujian kedua -dua model SIGLIP dan SIGLIP 2 dengan imej sampel, menunjukkan imej yang diambil dan membandingkan persamaan mereka dengan imej pertanyaan.)
Kesimpulan
SIGLIP 2 mewakili kemajuan besar dalam model bahasa penglihatan, yang menawarkan keupayaan pengambilan imej yang unggul. Kecekapan, ketepatan, dan kebolehsuaiannya menjadikannya alat yang berharga di pelbagai aplikasi.
Soalan -soalan yang sering ditanya
(Bahagian ini akan tetap sama, berpotensi dengan rewording kecil untuk kejelasan.)
(Nota: imej akan dimasukkan seperti yang dinyatakan dalam input asal.)
Atas ialah kandungan terperinci Meningkatkan Keupayaan Carian Imej Menggunakan Siglip 2. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!