cari
Rumahpembangunan bahagian belakangTutorial PythonMeneroka Kokoro TTS Voice Synthesis di Google Colab dengan T4

Exploring Kokoro TTS Voice Synthesis on Google Colab with T4

Kokoro-82M: Meneroka Model Teks-ke-Pertuturan (TTS) Berprestasi Tinggi

Kokoro-82M ialah model TTS berprestasi tinggi yang mampu menghasilkan audio berkualiti tinggi. Ia menyokong penukaran teks-ke-pertuturan yang mudah dan boleh melakukan sintesis pertuturan dengan mudah dengan menggunakan pemberat pada fail audio.

Kokoro-82M pada Muka Berpeluk

Bermula dari versi 0.23, Kokoro-82M turut menyokong bahasa Jepun. Anda boleh mencubanya dengan mudah melalui pautan berikut:

[Kokoro TTS pada Memeluk Face Spaces](Memeluk Face Spaces pautan hendaklah dimasukkan di sini)

Namun, intonasi Jepun masih agak tidak wajar.

Dalam tutorial ini kami akan menggunakan kokoro-onnx, pelaksanaan TTS yang memanfaatkan Kokoro dan masa jalan ONNX. Kami akan menggunakan versi 0.19 (versi stabil), yang hanya menyokong sintesis pertuturan untuk Bahasa Inggeris Amerika dan Inggeris Inggeris.

Seperti tajuknya, kod akan dilaksanakan dalam Google Colab.

Pasang kokoro-onnx

!git lfs install
!git clone https://huggingface.co/hexgrad/Kokoro-82M
%cd Kokoro-82M
!apt-get -qq -y install espeak-ng > /dev/null 2>&1
!pip install -q phonemizer torch transformers scipy munch
!pip install -U kokoro-onnx

Memuatkan pakej

import numpy as np
from scipy.io.wavfile import write
from IPython.display import display, Audio
from models import build_model
import torch
from models import build_model
from kokoro import generate

Jalankan contoh

Sebelum menguji sintesis pertuturan, mari jalankan contoh rasmi. Menjalankan kod berikut akan menjana dan memainkan audio dalam beberapa saat.

device = 'cuda' if torch.cuda.is_available() else 'cpu'
MODEL = build_model('kokoro-v0_19.pth', device)
VOICE_NAME = [
    'af', # 默认语音是 Bella 和 Sarah 的 50-50 混合
    'af_bella', 'af_sarah', 'am_adam', 'am_michael',
    'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
    'af_nicole', 'af_sky',
][0]
VOICEPACK = torch.load(f'voices/{VOICE_NAME}.pt', weights_only=True).to(device)
print(f'Loaded voice: {VOICE_NAME}')

text = "How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born."
audio, out_ps = generate(MODEL, text, VOICEPACK, lang=VOICE_NAME[0])

display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)

Sintesis pertuturan

Sekarang, mari kita masuk ke topik dan menguji sintesis pertuturan.

Tentukan pakej suara

  • af: Suara wanita Inggeris Amerika
  • pagi: Suara lelaki Inggeris Amerika
  • bf: Suara perempuan Inggeris Inggeris
  • bm: Suara lelaki Inggeris Inggeris
  • Kami kini akan memuatkan semua pek suara yang tersedia.
voicepack_af = torch.load(f'voices/af.pt', weights_only=True).to(device)
voicepack_af_bella = torch.load(f'voices/af_bella.pt', weights_only=True).to(device)
voicepack_af_nicole = torch.load(f'voices/af_nicole.pt', weights_only=True).to(device)
voicepack_af_sarah = torch.load(f'voices/af_sarah.pt', weights_only=True).to(device)
voicepack_af_sky = torch.load(f'voices/af_sky.pt', weights_only=True).to(device)
voicepack_am_adam = torch.load(f'voices/am_adam.pt', weights_only=True).to(device)
voicepack_am_michael = torch.load(f'voices/am_michael.pt', weights_only=True).to(device)
voicepack_bf_emma = torch.load(f'voices/bf_emma.pt', weights_only=True).to(device)
voicepack_bf_isabella = torch.load(f'voices/bf_isabella.pt', weights_only=True).to(device)
voicepack_bm_george = torch.load(f'voices/bm_george.pt', weights_only=True).to(device)
voicepack_bm_lewis = torch.load(f'voices/bm_lewis.pt', weights_only=True).to(device)

Jana teks menggunakan pertuturan yang dipratentukan

Untuk mengkaji perbezaan antara pertuturan yang disintesis, mari jana audio menggunakan paket pertuturan yang berbeza. Kami akan menggunakan teks contoh yang sama, tetapi anda boleh menukar pembolehubah voicepack_ untuk menggunakan sebarang pek pertuturan yang diingini.

#  以下代码段与原文相同,只是重复了多次,为了简洁,这里省略了重复的代码块。
#  每个代码块都使用不同的语音包生成音频,并使用 display(Audio(...)) 播放。

Sintesis Pertuturan: Pertuturan Campuran

Mula-mula, mari cipta suara biasa, menggabungkan dua suara wanita British (bf).

bf_average = (voicepack_bf_emma + voicepack_bf_isabella) / 2
audio, out_ps = generate(MODEL, text, bf_average, lang=VOICE_NAME[0])
display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)

Seterusnya, mari kita sintesiskan gabungan dua suara perempuan dan satu suara lelaki.

weight_1 = 0.25
weight_2 = 0.45
weight_3 = 0.3
weighted_voice = (voicepack_bf_emma * weight_1 +
                  voicepack_bf_isabella * weight_2 +
                  voicepack_bm_lewis * weight_3)
audio, out_ps = generate(MODEL, text, weighted_voice, lang=VOICE_NAME[0])
display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)

Akhir sekali, mari kita sintesiskan gabungan vokal lelaki Amerika dan British.

m_average = (voicepack_am_michael + voicepack_bm_george) / 2
audio, out_ps = generate(MODEL, text, m_average, lang=VOICE_NAME[0])
display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)

Saya juga menggunakan Gradio untuk menguji kesan campuran suara: (Pautan atau tangkapan skrin demo Gradio hendaklah dimasukkan di sini)

Menggabungkan ini dengan Ollama boleh membawa kepada beberapa percubaan yang menarik.

Output yang disemak ini mengekalkan makna dan struktur asal sambil meningkatkan aliran dan kejelasan blok kod berulang untuk menjana audio dengan pek suara yang berbeza telah diringkaskan untuk mengelakkan lebihan Pautan Spaces]" dan "(Pautan atau tangkapan skrin demo Gradio hendaklah dimasukkan di sini)" dengan pautan atau imej sebenar.

Atas ialah kandungan terperinci Meneroka Kokoro TTS Voice Synthesis di Google Colab dengan T4. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Bagaimanakah pilihan antara senarai dan tatasusunan memberi kesan kepada prestasi keseluruhan aplikasi Python yang berurusan dengan dataset yang besar?Bagaimanakah pilihan antara senarai dan tatasusunan memberi kesan kepada prestasi keseluruhan aplikasi Python yang berurusan dengan dataset yang besar?May 03, 2025 am 12:11 AM

Forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-efisien danfasterfornumumerical.2) mengelakkan yang tidak dapat dipertahankan.3)

Jelaskan bagaimana memori diperuntukkan untuk senarai berbanding tatasusunan dalam Python.Jelaskan bagaimana memori diperuntukkan untuk senarai berbanding tatasusunan dalam Python.May 03, 2025 am 12:10 AM

Inpython, listsusedynamicMemoryAllocationwithover-peruntukan, pemecahan yang tidak dapat dilaksanakan.1) listsallocatemoremoremorythanneedinitial, resizingwhennessary.2) numpyarraysallocateExactMemoreForelements, menawarkanpredictableSabeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeat.

Bagaimana anda menentukan jenis data elemen dalam array python?Bagaimana anda menentukan jenis data elemen dalam array python?May 03, 2025 am 12:06 AM

Inpython, YouCansspectHedatypeyFeleMeremodelerernspant.1) Usenpynernrump.1) usenpynerp.dloatp.ploatm64, formor preciscontrolatatypes.

Apa itu Numpy, dan mengapa penting untuk pengkomputeran berangka dalam Python?Apa itu Numpy, dan mengapa penting untuk pengkomputeran berangka dalam Python?May 03, 2025 am 12:03 AM

Numpyisessentialfornumericalcomputinginpythonduetoitsspeed, ingatanefisiensi, dancomprehensivemathematicalfunctions.1) it'sfastbeCauseitperformsoperatiation

Bincangkan konsep 'peruntukan memori bersebelahan' dan kepentingannya untuk tatasusunan.Bincangkan konsep 'peruntukan memori bersebelahan' dan kepentingannya untuk tatasusunan.May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscialforarraysbecauseitallowsficientandfastelementaccess.1) itenablesconstantTimeAccess, O (1), duetodirectaddresscalculation.2) itimproveScheFiCiencyBymultmulteLemiSphetfespercacheline.3)

Bagaimana anda memotong senarai python?Bagaimana anda memotong senarai python?May 02, 2025 am 12:14 AM

Slicingapythonlistisdoneusingthesyntaxlist [Mula: berhenti: langkah] .here'showitworks: 1) startistheindexofthefirstelementtoinclude.2) stopistheindexofthefirstelementToexclude.3)

Apakah beberapa operasi biasa yang boleh dilakukan pada array numpy?Apakah beberapa operasi biasa yang boleh dilakukan pada array numpy?May 02, 2025 am 12:09 AM

NumpyallowsforvariousoperationsonArrays: 1) BasicarithmeticLikeaddition, penolakan, pendaraban, danDivision; 2) Pengerjaan AdvancedSuchasmatrixmultiplication; 3) Element-WiseOperationswithoutExplicitLoops;

Bagaimana tatasusunan digunakan dalam analisis data dengan python?Bagaimana tatasusunan digunakan dalam analisis data dengan python?May 02, 2025 am 12:09 AM

Arraysinpython, terutamanya yang ada, adalah, penawaran yang ditawarkan.1) numpyarraysenableFandlingoflargedataSetsandClexPleperationsLikemovingAverages.2)

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

mPDF

mPDF

mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),