cari

R-Lock vs Lock dalam Python

Jan 24, 2025 pm 06:12 PM

R-Lock vs Lock in Python

Modul threading Python menawarkan dua alat penyegerakan penting: Lock dan RLock, kedua-duanya direka untuk mengawal akses kepada sumber kongsi dalam aplikasi berbilang benang. Walau bagaimanapun, fungsinya berbeza dengan ketara.


1. Lock (benang.Kunci)

  • Mekanisme: Mekanisme penguncian asas. Hanya satu benang boleh memegang kunci pada bila-bila masa. Sebarang benang lain yang cuba memperoleh akan disekat sehingga kunci dilepaskan.
  • Kemas masuk semula: Tidak masuk semula. Benang yang sudah mempunyai kunci tidak boleh memperolehnya semula; percubaan untuk berbuat demikian mengakibatkan kebuntuan.
  • Aplikasi: Sesuai untuk situasi di mana benang memerlukan kunci sekali sahaja, melepaskannya setelah tugas selesai.

Lock Contoh:

import threading

lock = threading.Lock()

def critical_section():
    lock.acquire()
    try:
        print(f"{threading.current_thread().name} is accessing the shared resource.")
    finally:
        lock.release()

thread1 = threading.Thread(target=critical_section)
thread2 = threading.Thread(target=critical_section)

thread1.start()
thread2.start()
thread1.join()
thread2.join()

2. RLock (benang.Rlock)

  • Mekanisme: Kunci masuk semula, membenarkan benang memperoleh kunci yang sama beberapa kali tanpa menyebabkan kebuntuan. Setiap pemerolehan memerlukan keluaran yang sepadan.
  • Kemasukan Semula: Penyertaan Semula. Seutas benang boleh memperoleh semula kunci yang telah dipegangnya, dengan syarat ia melepaskannya dengan bilangan kali yang sama.
  • Aplikasi: Sesuai untuk senario yang melibatkan fungsi rekursif atau operasi terlindung kunci bersarang di mana benang mungkin memerlukan kunci yang sama berulang kali.

RLock Contoh:

import threading

rlock = threading.RLock()

def recursive_task(count):
    rlock.acquire()
    try:
        print(f"{threading.current_thread().name} acquired the lock; count = {count}")
        if count > 0:
            recursive_task(count - 1)  # Recursive call; re-acquires the lock
    finally:
        rlock.release()

thread = threading.Thread(target=recursive_task, args=(3,))
thread.start()
thread.join()

Perbezaan Utama: Lock lwn. RLock

Ciri
Feature Lock (threading.Lock) RLock (threading.RLock)
Reentrancy Non-reentrant Reentrant
Use Case Simple locking Recursive/nested locking
Performance Generally faster Slightly more overhead
(benang.Kunci)
(threading.RLock) Kemasukan Semula Tidak masuk semula Peserta semula Kes Penggunaan Penguncian mudah Penguncian rekursif/bersarang Prestasi Secara amnya lebih pantas Lebih tinggi sedikit table>

LockMemilih Antara RLock dan

  • LockLebih suka
  • untuk senario penguncian yang mudah di mana kemasukan semula tidak diperlukan. Ia lebih ringkas dan selalunya lebih pantas.
  • RLockPilih
  • apabila berurusan dengan fungsi rekursif atau penguncian bersarang, mengelakkan kemungkinan kebuntuan. Kerumitan tambahan ini dibenarkan oleh pencegahan kebuntuan dalam situasi khusus ini.

Atas ialah kandungan terperinci R-Lock vs Lock dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dalam Tindakan: Contoh dunia nyataPython dalam Tindakan: Contoh dunia nyataApr 18, 2025 am 12:18 AM

Aplikasi dunia sebenar Python termasuk analisis data, pembangunan web, kecerdasan buatan dan automasi. 1) Dalam analisis data, Python menggunakan panda dan matplotlib untuk memproses dan memvisualisasikan data. 2) Dalam pembangunan web, kerangka Django dan Flask memudahkan penciptaan aplikasi web. 3) Dalam bidang kecerdasan buatan, tensorflow dan pytorch digunakan untuk membina dan melatih model. 4) Dari segi automasi, skrip python boleh digunakan untuk tugas -tugas seperti menyalin fail.

Penggunaan Utama Python: Gambaran Keseluruhan KomprehensifPenggunaan Utama Python: Gambaran Keseluruhan KomprehensifApr 18, 2025 am 12:18 AM

Python digunakan secara meluas dalam bidang sains data, pembangunan web dan bidang skrip automasi. 1) Dalam sains data, Python memudahkan pemprosesan dan analisis data melalui perpustakaan seperti numpy dan panda. 2) Dalam pembangunan web, rangka kerja Django dan Flask membolehkan pemaju dengan cepat membina aplikasi. 3) Dalam skrip automatik, kesederhanaan Python dan perpustakaan standard menjadikannya ideal.

Tujuan utama python: fleksibiliti dan kemudahan penggunaanTujuan utama python: fleksibiliti dan kemudahan penggunaanApr 17, 2025 am 12:14 AM

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python: Kekuatan pengaturcaraan serba bolehPython: Kekuatan pengaturcaraan serba bolehApr 17, 2025 am 12:09 AM

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Belajar python dalam 2 jam sehari: panduan praktikalBelajar python dalam 2 jam sehari: panduan praktikalApr 17, 2025 am 12:05 AM

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa