Modul threading
Python menawarkan dua alat penyegerakan penting: Lock
dan RLock
, kedua-duanya direka untuk mengawal akses kepada sumber kongsi dalam aplikasi berbilang benang. Walau bagaimanapun, fungsinya berbeza dengan ketara.
1. Lock
(benang.Kunci)
- Mekanisme: Mekanisme penguncian asas. Hanya satu benang boleh memegang kunci pada bila-bila masa. Sebarang benang lain yang cuba memperoleh akan disekat sehingga kunci dilepaskan.
- Kemas masuk semula: Tidak masuk semula. Benang yang sudah mempunyai kunci tidak boleh memperolehnya semula; percubaan untuk berbuat demikian mengakibatkan kebuntuan.
- Aplikasi: Sesuai untuk situasi di mana benang memerlukan kunci sekali sahaja, melepaskannya setelah tugas selesai.
Lock
Contoh:
import threading lock = threading.Lock() def critical_section(): lock.acquire() try: print(f"{threading.current_thread().name} is accessing the shared resource.") finally: lock.release() thread1 = threading.Thread(target=critical_section) thread2 = threading.Thread(target=critical_section) thread1.start() thread2.start() thread1.join() thread2.join()
2. RLock
(benang.Rlock)
- Mekanisme: Kunci masuk semula, membenarkan benang memperoleh kunci yang sama beberapa kali tanpa menyebabkan kebuntuan. Setiap pemerolehan memerlukan keluaran yang sepadan.
- Kemasukan Semula: Penyertaan Semula. Seutas benang boleh memperoleh semula kunci yang telah dipegangnya, dengan syarat ia melepaskannya dengan bilangan kali yang sama.
- Aplikasi: Sesuai untuk senario yang melibatkan fungsi rekursif atau operasi terlindung kunci bersarang di mana benang mungkin memerlukan kunci yang sama berulang kali.
RLock
Contoh:
import threading rlock = threading.RLock() def recursive_task(count): rlock.acquire() try: print(f"{threading.current_thread().name} acquired the lock; count = {count}") if count > 0: recursive_task(count - 1) # Recursive call; re-acquires the lock finally: rlock.release() thread = threading.Thread(target=recursive_task, args=(3,)) thread.start() thread.join()
Perbezaan Utama: Lock
lwn. RLock
Feature |
Lock (threading.Lock) |
RLock (threading.RLock) |
---|---|---|
Reentrancy | Non-reentrant | Reentrant |
Use Case | Simple locking | Recursive/nested locking |
Performance | Generally faster | Slightly more overhead |
(threading.RLock)
Lock
Memilih Antara RLock
dan
-
Lock
Lebih suka untuk senario penguncian yang mudah di mana kemasukan semula tidak diperlukan. Ia lebih ringkas dan selalunya lebih pantas. -
RLock
Pilih apabila berurusan dengan fungsi rekursif atau penguncian bersarang, mengelakkan kemungkinan kebuntuan. Kerumitan tambahan ini dibenarkan oleh pencegahan kebuntuan dalam situasi khusus ini.
Atas ialah kandungan terperinci R-Lock vs Lock dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Pythonisbothompiledandintinterpreted.whenyourunapythonscript, itisfirstompiledintobytecode, yang manaThenexecutedbythonvirtualmachine (pvm).

Python bukan pelaksanaan line-by-line, tetapi dioptimumkan dan pelaksanaan bersyarat berdasarkan mekanisme penterjemah. Jurubahasa menukarkan kod ke bytecode, dilaksanakan oleh PVM, dan mungkin pretompile ekspresi malar atau mengoptimumkan gelung. Memahami mekanisme ini membantu mengoptimumkan kod dan meningkatkan kecekapan.

Terdapat banyak kaedah untuk menyambungkan dua senarai dalam Python: 1. Pengendali menggunakan, yang mudah tetapi tidak cekap dalam senarai besar; 2. Gunakan kaedah Extend, yang cekap tetapi akan mengubah suai senarai asal; 3. Gunakan operator =, yang kedua -duanya cekap dan boleh dibaca; 4. Gunakan fungsi itertools.Chain, yang efisien memori tetapi memerlukan import tambahan; 5. Penggunaan senarai parsing, yang elegan tetapi mungkin terlalu kompleks. Kaedah pemilihan harus berdasarkan konteks dan keperluan kod.

Terdapat banyak cara untuk menggabungkan senarai Python: 1. Menggunakan pengendali, yang mudah tetapi tidak memori yang cekap untuk senarai besar; 2. Gunakan kaedah Extend, yang cekap tetapi akan mengubah suai senarai asal; 3. Gunakan itertools.chain, yang sesuai untuk set data yang besar; 4. Penggunaan * pengendali, bergabung dengan senarai kecil hingga sederhana dalam satu baris kod; 5. Gunakan numpy.concatenate, yang sesuai untuk set data dan senario yang besar dengan keperluan prestasi tinggi; 6. Gunakan kaedah tambahan, yang sesuai untuk senarai kecil tetapi tidak cekap. Apabila memilih kaedah, anda perlu mempertimbangkan saiz senarai dan senario aplikasi.

Compiledlanguagesofferspeedandsecurity, whilintpretedLanguagesprovideoeSeAfuseAndPortability.1) compiledLanguageslikec arefasterandsecureButhavelongerDevelopmentCyclesandplatformdependency.2) interpretedLanguagePyePyhonareeAseAreeAseaneAseaneSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSeaneaneAseaneaneAseaneaneAdoSioSiAdaSiAdoeSeaneAdoeSeaneAdoeSeanDoReAseanDOREPYHOREADOREB

Di Python, A untuk gelung digunakan untuk melintasi objek yang boleh dimakan, dan gelung sementara digunakan untuk melakukan operasi berulang kali apabila keadaan berpuas hati. 1) Untuk contoh gelung: melintasi senarai dan mencetak unsur -unsur. 2) Walaupun contoh gelung: Tebak permainan nombor sehingga anda rasa betul. Menguasai prinsip kitaran dan teknik pengoptimuman dapat meningkatkan kecekapan dan kebolehpercayaan kod.

Untuk menggabungkan senarai ke dalam rentetan, menggunakan kaedah Join () dalam Python adalah pilihan terbaik. 1) Gunakan kaedah Join () untuk menggabungkan elemen senarai ke dalam rentetan, seperti '' .join (my_list). 2) Untuk senarai yang mengandungi nombor, tukar peta (str, nombor) ke dalam rentetan sebelum menggabungkan. 3) Anda boleh menggunakan ekspresi penjana untuk pemformatan kompleks, seperti ','. Sertai (f '({Fruit})' forfruitinFruits). 4) Apabila memproses jenis data bercampur, gunakan peta (str, mixed_list) untuk memastikan semua elemen dapat ditukar menjadi rentetan. 5) Untuk senarai besar, gunakan '' .join (large_li

Pythonusesahybridapproach, combiningcompilationtobytecodeandinterpretation.1) codeiscompiledtopplatform-independentbytecode.2) byteCodeisinterpretedbythepythonvirtualmachine, enhancingficiencyAndortability.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa
