FiveCrop dalam PyTorch

Barbara Streisand
Barbara Streisandasal
2025-01-21 12:12:09899semak imbas

Beli Saya Kopi☕

*Memo:

  • Siaran saya menerangkan OxfordIIITPet().

FiveCrop() boleh memangkas imej kepada 5 bahagian (Kiri atas, kanan atas, kiri bawah, kanan bawah dan tengah) seperti yang ditunjukkan di bawah:

*Memo:

  • Argumen pertama untuk permulaan ialah size(Required-Type:int atau tuple/list(int) atau size()): *Memo:
    • Ia adalah [tinggi, lebar].
    • Ia mestilah 1 <= x.
    • Tuple/senarai mestilah 1D dengan 1 atau 2 elemen.
    • Nilai tunggal(int atau tuple/list(int) bermaksud [saiz, saiz].
  • Argumen pertama ialah img(Required-Type:PIL Image or tensor(int)): *Memo:
    • Tensor mestilah 2D atau 3D bagi satu atau lebih elemen.
    • Jangan gunakan img=.
  • v2 disyorkan untuk digunakan mengikut V1 atau V2? Mana satu patut saya guna?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import FiveCrop

fivecrop = FiveCrop(size=100)

fivecrop
# FiveCrop(size=(100, 100))

fivecrop.size
# (100, 100)

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

p500p394origin_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[500, 394])
    # transform=FiveCrop(size=[600])
    # transform=FiveCrop(size=[600, 600])
)

p300_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=300)
)

p200_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=200)
)

p100_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=100)
)

p50_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=50)
)

p10_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=10)
)

p200p300_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[200, 300])
)

p300p200_data = OxfordIIITPet(
    root="data",
    transform=FiveCrop(size=[300, 200])
)

import matplotlib.pyplot as plt

def show_images1(fcims, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    titles = ['Top-left', 'Top-right', 'bottom-left',
              'bottom-right', 'center']
    for i, fcim in zip(range(1, 6), fcims):
        plt.subplot(1, 5, i)
        plt.title(label=titles[i-1], fontsize=14)
        plt.imshow(X=fcim)
    plt.tight_layout()
    plt.show()

plt.figure(figsize=(7, 9))
plt.title(label="Origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images1(fcims=p500p394origin_data[0][0], main_title="p500p394origin_data")
show_images1(fcims=p300_data[0][0], main_title="p300_data")
show_images1(fcims=p200_data[0][0], main_title="p200_data")
show_images1(fcims=p100_data[0][0], main_title="p100_data")
show_images1(fcims=p50_data[0][0], main_title="p50_data")
show_images1(fcims=p10_data[0][0], main_title="p10_data")
show_images1(fcims=p200p300_data[0][0], main_title="p200p300_data")
show_images1(fcims=p300p200_data[0][0], main_title="p300p200_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(im, main_title=None, s=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    titles = ['Top-left', 'Top-right', 'bottom-left',
              'bottom-right', 'center']
    if not s:
        s = [im.size[1], im.size[0]] 
    fc = FiveCrop(size=s) # Here
    for i, fcim in zip(range(1, 6), fc(im)):
        plt.subplot(1, 5, i)
        plt.title(label=titles[i-1], fontsize=14)
        plt.imshow(X=fcim) # Here
    plt.tight_layout()
    plt.show()

plt.figure(figsize=(7, 9))
plt.title(label="Origin_data", fontsize=14)
plt.imshow(X=origin_data[0][0])
show_images2(im=origin_data[0][0], main_title="p500p394origin_data")
# show_images2(im=origin_data[0][0], main_title="p500p394origin_data",
#              s=[500, 394])
show_images2(im=origin_data[0][0], main_title="p300_data", s=300)
show_images2(im=origin_data[0][0], main_title="p200_data", s=200)
show_images2(im=origin_data[0][0], main_title="p100_data", s=100)
show_images2(im=origin_data[0][0], main_title="p50_data", s=50)
show_images2(im=origin_data[0][0], main_title="p10_data", s=10)
show_images2(im=origin_data[0][0], main_title="p200p300_data", s=[200, 300])
show_images2(im=origin_data[0][0], main_title="p300p200_data", s=[300, 200])

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Atas ialah kandungan terperinci FiveCrop dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn