


Mengoptimumkan Pencapaian Rekod Terakhir dalam Hubungan Satu-dengan-Banyak Pangkalan Data
Mengambil semula rekod terbaharu untuk setiap kumpulan dalam hubungan pangkalan data satu-ke-banyak dengan cekap (cth., pelanggan dan pembelian mereka) ialah tugas manipulasi data yang biasa. Artikel ini meneroka strategi pertanyaan yang berkesan menggunakan operasi gabungan.
Pembinaan dan Penambahbaikan Pertanyaan
Pertanyaan berikut mendapatkan semula butiran pembelian terakhir untuk setiap pelanggan:
SELECT c.*, p1.* FROM customer c JOIN purchase p1 ON (c.id = p1.customer_id) LEFT OUTER JOIN purchase p2 ON (c.id = p2.customer_id AND p1.date < p2.date) WHERE p2.id IS NULL;
Pertanyaan ini menggunakan LEFT OUTER JOIN
untuk membandingkan setiap pembelian dengan pembelian lain daripada pelanggan yang sama. Fasal WHERE
menapis hasil, memastikan hanya pembelian terkini (jika tiada pembelian kemudian) disertakan.
Pengoptimuman Indeks
Untuk prestasi pertanyaan yang optimum, buat indeks kompaun pada jadual purchase
menggunakan lajur ini: (customer_id, date, id)
. Indeks penutup ini mempercepatkan operasi cantum, mengelakkan imbasan jadual tambahan.
Pertimbangan Denormalisasi: Pertukaran
Menambah lajur "last_purchase" pada jadual customer
(penyahnormalan) memudahkan pertanyaan tetapi memperkenalkan lebihan data dan kemungkinan anomali kemas kini. Pertimbangkan dengan teliti implikasi sebelum melaksanakan pendekatan ini; ia secara amnya hanya berfaedah jika pertanyaan sedemikian sangat kerap.
Pertanyaan Ringkas dengan ID Isih
Jika lajur purchase
jadual id
tersusun mengikut tarikh (menurun), pertanyaan ringkas menggunakan LIMIT
menjadi boleh dilaksanakan:
SELECT c.*, p1.* FROM customer c JOIN purchase p1 ON (c.id = p1.customer_id) WHERE p1.id = ( SELECT MAX(id) FROM purchase WHERE customer_id = c.id ) LIMIT 1;
Walau bagaimanapun, ingat bahawa ini bergantung pada pesanan konsisten lajur id
yang menggambarkan pembelian "terkini". Sebarang penyelewengan daripada pesanan ini akan menghasilkan keputusan yang salah.
Atas ialah kandungan terperinci Bagaimana untuk Mendapatkan Rekod Terakhir dengan Cekap dalam Hubungan Satu-dengan-Banyak Menggunakan Operasi Berbilang Gabungan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Prosedur yang disimpan adalah penyataan SQL yang dipraktikkan dalam MySQL untuk meningkatkan prestasi dan memudahkan operasi kompleks. 1. Meningkatkan prestasi: Selepas penyusunan pertama, panggilan seterusnya tidak perlu dikompilasi. 2. Meningkatkan Keselamatan: Mengatasi akses jadual data melalui kawalan kebenaran. 3. Memudahkan operasi kompleks: Campurkan beberapa pernyataan SQL untuk memudahkan logik lapisan aplikasi.

Prinsip kerja cache pertanyaan MySQL adalah untuk menyimpan hasil pertanyaan pilih, dan apabila pertanyaan yang sama dilaksanakan sekali lagi, hasil cache dikembalikan secara langsung. 1) Cache pertanyaan meningkatkan prestasi bacaan pangkalan data dan mendapati hasil cache melalui nilai hash. 2) Konfigurasi mudah, set query_cache_type dan query_cache_size dalam fail konfigurasi MySQL. 3) Gunakan kata kunci sql_no_cache untuk melumpuhkan cache pertanyaan khusus. 4) Dalam persekitaran kemas kini frekuensi tinggi, cache pertanyaan boleh menyebabkan kesesakan prestasi dan perlu dioptimumkan untuk digunakan melalui pemantauan dan pelarasan parameter.

Sebab mengapa MySQL digunakan secara meluas dalam pelbagai projek termasuk: 1. Prestasi tinggi dan skalabilitas, menyokong pelbagai enjin penyimpanan; 2. Mudah untuk digunakan dan mengekalkan, konfigurasi mudah dan alat yang kaya; 3. Ekosistem yang kaya, menarik sejumlah besar sokongan alat komuniti dan pihak ketiga; 4. Sokongan silang platform, sesuai untuk pelbagai sistem operasi.

Langkah -langkah untuk menaik taraf pangkalan data MySQL termasuk: 1. Sandarkan pangkalan data, 2. Hentikan perkhidmatan MySQL semasa, 3. Pasang versi baru MySQL, 4. Mulakan versi baru MySQL Service, 5 pulih pangkalan data. Isu keserasian diperlukan semasa proses peningkatan, dan alat lanjutan seperti Perconatoolkit boleh digunakan untuk ujian dan pengoptimuman.

Dasar sandaran MySQL termasuk sandaran logik, sandaran fizikal, sandaran tambahan, sandaran berasaskan replikasi, dan sandaran awan. 1. Backup Logical menggunakan MySqldump untuk mengeksport struktur dan data pangkalan data, yang sesuai untuk pangkalan data kecil dan migrasi versi. 2. Sandaran fizikal adalah cepat dan komprehensif dengan menyalin fail data, tetapi memerlukan konsistensi pangkalan data. 3. Backup tambahan menggunakan pembalakan binari untuk merekodkan perubahan, yang sesuai untuk pangkalan data yang besar. 4. Sandaran berasaskan replikasi mengurangkan kesan ke atas sistem pengeluaran dengan menyokong dari pelayan. 5. Backup awan seperti Amazonrds menyediakan penyelesaian automasi, tetapi kos dan kawalan perlu dipertimbangkan. Apabila memilih dasar, saiz pangkalan data, toleransi downtime, masa pemulihan, dan matlamat titik pemulihan perlu dipertimbangkan.

Mysqlclusteringenhancesdatabaserobustnessandsandscalabilitybydistributingdataacrossmultiplenodes.itusesthendbenginefordatareplicationandfaulttolerance, ugeinghighavailability.setupinvolvesconfiguringmanagement, Data, dansqlnodes

Mengoptimumkan reka bentuk skema pangkalan data di MySQL dapat meningkatkan prestasi melalui langkah -langkah berikut: 1. Pengoptimuman indeks: Buat indeks pada lajur pertanyaan biasa, mengimbangi overhead pertanyaan dan memasukkan kemas kini. 2. Pengoptimuman Struktur Jadual: Mengurangkan kelebihan data melalui normalisasi atau anti-normalisasi dan meningkatkan kecekapan akses. 3. Pemilihan Jenis Data: Gunakan jenis data yang sesuai, seperti INT dan bukannya VARCHAR, untuk mengurangkan ruang penyimpanan. 4. Pembahagian dan Sub-meja: Untuk jumlah data yang besar, gunakan pembahagian dan sub-meja untuk menyebarkan data untuk meningkatkan kecekapan pertanyaan dan penyelenggaraan.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular
