cari
Rumahpembangunan bahagian belakangTutorial PythonBermula dengan Python untuk Pembelajaran Mesin

Getting Started with Python for Machine Learning

Kepopularan Python dalam Pembelajaran Mesin (ML) berpunca daripada kemudahan penggunaan, fleksibiliti dan sokongan perpustakaan yang meluas. Panduan ini menyediakan pengenalan asas untuk menggunakan Python untuk ML, meliputi perpustakaan penting dan menunjukkan binaan model mudah.


Mengapa Memilih Python untuk Pembelajaran Mesin?

Penguasaan Python dalam bidang ML adalah disebabkan oleh beberapa kelebihan utama:

  • Mesra Pemula: Sintaks intuitifnya menjadikannya boleh diakses oleh pendatang baharu.
  • Perpustakaan Kaya: Banyak perpustakaan memudahkan manipulasi data, visualisasi dan pembinaan model.
  • Sokongan Komuniti Teguh: Komuniti yang besar dan aktif memastikan sumber dan bantuan tersedia.

Python menawarkan alatan yang komprehensif untuk setiap peringkat proses ML, daripada analisis data kepada penggunaan model.


Perpustakaan Python Penting untuk Pembelajaran Mesin

Sebelum memulakan perjalanan ML anda, biasakan diri anda dengan perpustakaan Python yang penting ini:

NumPy: Asas pengkomputeran berangka dalam Python. Menyediakan sokongan untuk tatasusunan, matriks dan fungsi matematik.

  • Aplikasi: Penting untuk operasi berangka asas, algebra linear dan manipulasi tatasusunan.

Panda: Pustaka yang berkuasa untuk manipulasi dan analisis data. Struktur DataFramenya memudahkan kerja dengan data berstruktur.

  • Aplikasi: Sesuai untuk memuatkan, membersihkan dan meneroka set data.

Scikit-learn: Pustaka ML yang paling banyak digunakan dalam Python. Menawarkan alatan yang cekap untuk perlombongan dan analisis data, termasuk algoritma untuk pengelasan, regresi dan pengelompokan.

  • Aplikasi: Membina dan menilai model ML.

Menyediakan Persekitaran Pembangunan Anda

Pasang perpustakaan yang diperlukan menggunakan pip:

pip install numpy pandas scikit-learn

Setelah dipasang, anda sudah bersedia untuk memulakan pengekodan.


Aliran Kerja Pembelajaran Mesin Praktikal

Mari bina model ML asas menggunakan set data Iris, yang mengelaskan spesies iris berdasarkan ukuran kelopak.

Langkah 1: Import Perpustakaan

Import perpustakaan yang diperlukan:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

Langkah 2: Muatkan Set Data

Muatkan set data Iris menggunakan Scikit-learn:

# Load the Iris dataset
iris = load_iris()

# Convert to a Pandas DataFrame
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['species'] = iris.target

Langkah 3: Penerokaan Data

Analisis data:

# Display initial rows
print(data.head())

# Check for missing values
print(data.isnull().sum())

# Summary statistics
print(data.describe())

Langkah 4: Penyediaan Data

Asingkan ciri (X) dan label (y), dan bahagikan data kepada set latihan dan ujian:

# Features (X) and labels (y)
X = data.drop('species', axis=1)
y = data['species']

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Langkah 5: Latihan Model

Latih pengelas Hutan Rawak:

pip install numpy pandas scikit-learn

Langkah 6: Ramalan dan Penilaian

Buat ramalan dan nilaikan ketepatan model:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

Tahniah! Anda telah membuat model ML pertama anda. Untuk melanjutkan pembelajaran anda:

  • Teroka set data daripada Kaggle atau Repositori Pembelajaran Mesin UCI.
  • Percubaan dengan algoritma lain (regresi linear, pepohon keputusan, mesin vektor sokongan).
  • Ketahui teknik prapemprosesan data (penskalaan, pengekodan, pemilihan ciri).

Sumber Pembelajaran Lanjut

  • Dokumentasi Scikit-Learn: Panduan rasmi Scikit-Learn.
  • Kaggle Learn: Tutorial ML praktikal untuk pemula.
  • Pembelajaran Mesin Python oleh Sebastian Raschka: Buku mesra pengguna tentang ML dengan Python.

Atas ialah kandungan terperinci Bermula dengan Python untuk Pembelajaran Mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Apakah alternatif untuk menggabungkan dua senarai dalam Python?Apakah alternatif untuk menggabungkan dua senarai dalam Python?May 09, 2025 am 12:16 AM

Terdapat banyak kaedah untuk menyambungkan dua senarai dalam Python: 1. Pengendali menggunakan, yang mudah tetapi tidak cekap dalam senarai besar; 2. Gunakan kaedah Extend, yang cekap tetapi akan mengubah suai senarai asal; 3. Gunakan operator =, yang kedua -duanya cekap dan boleh dibaca; 4. Gunakan fungsi itertools.Chain, yang efisien memori tetapi memerlukan import tambahan; 5. Penggunaan senarai parsing, yang elegan tetapi mungkin terlalu kompleks. Kaedah pemilihan harus berdasarkan konteks dan keperluan kod.

Python: Cara yang cekap untuk menggabungkan dua senaraiPython: Cara yang cekap untuk menggabungkan dua senaraiMay 09, 2025 am 12:15 AM

Terdapat banyak cara untuk menggabungkan senarai Python: 1. Menggunakan pengendali, yang mudah tetapi tidak memori yang cekap untuk senarai besar; 2. Gunakan kaedah Extend, yang cekap tetapi akan mengubah suai senarai asal; 3. Gunakan itertools.chain, yang sesuai untuk set data yang besar; 4. Penggunaan * pengendali, bergabung dengan senarai kecil hingga sederhana dalam satu baris kod; 5. Gunakan numpy.concatenate, yang sesuai untuk set data dan senario yang besar dengan keperluan prestasi tinggi; 6. Gunakan kaedah tambahan, yang sesuai untuk senarai kecil tetapi tidak cekap. Apabila memilih kaedah, anda perlu mempertimbangkan saiz senarai dan senario aplikasi.

Disusun vs bahasa yang ditafsirkan: kebaikan dan keburukanDisusun vs bahasa yang ditafsirkan: kebaikan dan keburukanMay 09, 2025 am 12:06 AM

Compiledlanguagesofferspeedandsecurity, whilintpretedLanguagesprovideoeSeAfuseAndPortability.1) compiledLanguageslikec arefasterandsecureButhavelongerDevelopmentCyclesandplatformdependency.2) interpretedLanguagePyePyhonareeAseAreeAseaneAseaneSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSeaneaneAseaneaneAseaneaneAdoSioSiAdaSiAdoeSeaneAdoeSeaneAdoeSeanDoReAseanDOREPYHOREADOREB

Python: Untuk dan sementara gelung, panduan paling lengkapPython: Untuk dan sementara gelung, panduan paling lengkapMay 09, 2025 am 12:05 AM

Di Python, A untuk gelung digunakan untuk melintasi objek yang boleh dimakan, dan gelung sementara digunakan untuk melakukan operasi berulang kali apabila keadaan berpuas hati. 1) Untuk contoh gelung: melintasi senarai dan mencetak unsur -unsur. 2) Walaupun contoh gelung: Tebak permainan nombor sehingga anda rasa betul. Menguasai prinsip kitaran dan teknik pengoptimuman dapat meningkatkan kecekapan dan kebolehpercayaan kod.

Python Concatenate menyenaraikan ke dalam rentetanPython Concatenate menyenaraikan ke dalam rentetanMay 09, 2025 am 12:02 AM

Untuk menggabungkan senarai ke dalam rentetan, menggunakan kaedah Join () dalam Python adalah pilihan terbaik. 1) Gunakan kaedah Join () untuk menggabungkan elemen senarai ke dalam rentetan, seperti '' .join (my_list). 2) Untuk senarai yang mengandungi nombor, tukar peta (str, nombor) ke dalam rentetan sebelum menggabungkan. 3) Anda boleh menggunakan ekspresi penjana untuk pemformatan kompleks, seperti ','. Sertai (f '({Fruit})' forfruitinFruits). 4) Apabila memproses jenis data bercampur, gunakan peta (str, mixed_list) untuk memastikan semua elemen dapat ditukar menjadi rentetan. 5) Untuk senarai besar, gunakan '' .join (large_li

Pendekatan Hibrid Python: Kompilasi dan Tafsiran DigabungkanPendekatan Hibrid Python: Kompilasi dan Tafsiran DigabungkanMay 08, 2025 am 12:16 AM

Pythonusesahybridapproach, combiningcompilationtobytecodeandinterpretation.1) codeiscompiledtopplatform-independentbytecode.2) byteCodeisinterpretedbythepythonvirtualmachine, enhancingficiencyAndortability.

Ketahui perbezaan antara gelung 'untuk' dan 'sementara' PythonKetahui perbezaan antara gelung 'untuk' dan 'sementara' PythonMay 08, 2025 am 12:11 AM

TheKeydifferencesbetweenpython's "for" and "while" loopsare: 1) "untuk" loopsareidealforiteratingoversequencesorknowniterations, while2) "manakala" loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.un

Senarai concatenate python dengan penduaSenarai concatenate python dengan penduaMay 08, 2025 am 12:09 AM

Di Python, anda boleh menyambungkan senarai dan menguruskan elemen pendua melalui pelbagai kaedah: 1) Gunakan pengendali atau melanjutkan () untuk mengekalkan semua elemen pendua; 2) Tukar ke set dan kemudian kembali ke senarai untuk mengalih keluar semua elemen pendua, tetapi pesanan asal akan hilang; 3) Gunakan gelung atau senarai pemantauan untuk menggabungkan set untuk menghapuskan elemen pendua dan mengekalkan urutan asal.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.