Perbandingan prestasi LEFT JOIN dan INNER JOIN dalam SQL Server
Mendedahkan mitos kelebihan kelajuan LEFT JOIN
Terdapat salah tanggapan umum bahawa LEFT JOIN sememangnya lebih pantas daripada INNER JOIN dalam SQL Server. Walau bagaimanapun, andaian ini pada asasnya salah.
Kebenaran terserlah
Sebenarnya, LEFT JOIN memerlukan lebih masa pemprosesan berbanding INNER JOIN. Mengikut definisi, LEFT JOIN mengandungi operasi INNER JOIN, tetapi ia juga melakukan langkah tambahan untuk melanjutkan hasil dengan nilai NULL. Perlu diingat bahawa LEFT JOIN selalunya mengembalikan lebih banyak baris, seterusnya menyebabkan peningkatan masa pelaksanaan disebabkan set hasil yang lebih besar.
Ketahui puncanya
Kebanyakan masa, halangan prestasi kepada pertanyaan pangkalan data tidak berpunca daripada pilihan antara JOIN DALAM dan JOIN KIRI. Masalah asas biasanya adalah pengindeksan yang lemah atau kekurangan indeks yang sesuai. Masalahnya boleh menjadi lebih teruk apabila beberapa jadual terlibat (9 jadual dalam kes ini).
Semak Corak
Untuk memberikan panduan khusus, adalah penting untuk memeriksa skema yang disediakan. Tanpa corak, sukar untuk menentukan punca sebenar prestasi perlahan.
Pengecualian
Secara teorinya, terdapat situasi di mana LEFT JOIN mungkin lebih cepat daripada INNER JOIN:
- Saiz meja yang sangat kecil (kurang daripada 10 baris)
- Tiada indeks yang sesuai
Dalam kes ini, SQL Server boleh memilih untuk melakukan gelung bersarang pada LEFT JOIN dan bukannya menggunakan padanan cincang yang lebih cekap pada INNER JOIN. Walau bagaimanapun, keadaan ini sangat tidak mungkin berlaku dalam operasi pangkalan data sebenar.
Pertimbangan pengoptimuman
Daripada bergantung pada perbezaan kelajuan yang didakwa antara LEFT JOIN dan INNER JOIN, adalah lebih baik untuk menyelesaikan masalah teras pengindeksan yang tidak mencukupi untuk mengoptimumkan pertanyaan pangkalan data. Mencipta indeks yang sesuai dan memastikan liputan indeks yang mencukupi boleh meningkatkan prestasi dengan ketara.
Kesimpulan
Salah faham tentang kelebihan prestasi LEFT JOIN berbanding INNER JOIN boleh membawa kepada pengoptimuman ke arah yang salah. Memfokuskan pada pengindeksan yang betul dan prinsip reka bentuk pangkalan data akhirnya akan membawa kepada peningkatan prestasi yang diingini.
Atas ialah kandungan terperinci Adakah LEFT JOIN Lebih Cepat Daripada INNER JOIN dalam SQL Server?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Prosedur yang disimpan adalah penyataan SQL yang dipraktikkan dalam MySQL untuk meningkatkan prestasi dan memudahkan operasi kompleks. 1. Meningkatkan prestasi: Selepas penyusunan pertama, panggilan seterusnya tidak perlu dikompilasi. 2. Meningkatkan Keselamatan: Mengatasi akses jadual data melalui kawalan kebenaran. 3. Memudahkan operasi kompleks: Campurkan beberapa pernyataan SQL untuk memudahkan logik lapisan aplikasi.

Prinsip kerja cache pertanyaan MySQL adalah untuk menyimpan hasil pertanyaan pilih, dan apabila pertanyaan yang sama dilaksanakan sekali lagi, hasil cache dikembalikan secara langsung. 1) Cache pertanyaan meningkatkan prestasi bacaan pangkalan data dan mendapati hasil cache melalui nilai hash. 2) Konfigurasi mudah, set query_cache_type dan query_cache_size dalam fail konfigurasi MySQL. 3) Gunakan kata kunci sql_no_cache untuk melumpuhkan cache pertanyaan khusus. 4) Dalam persekitaran kemas kini frekuensi tinggi, cache pertanyaan boleh menyebabkan kesesakan prestasi dan perlu dioptimumkan untuk digunakan melalui pemantauan dan pelarasan parameter.

Sebab mengapa MySQL digunakan secara meluas dalam pelbagai projek termasuk: 1. Prestasi tinggi dan skalabilitas, menyokong pelbagai enjin penyimpanan; 2. Mudah untuk digunakan dan mengekalkan, konfigurasi mudah dan alat yang kaya; 3. Ekosistem yang kaya, menarik sejumlah besar sokongan alat komuniti dan pihak ketiga; 4. Sokongan silang platform, sesuai untuk pelbagai sistem operasi.

Langkah -langkah untuk menaik taraf pangkalan data MySQL termasuk: 1. Sandarkan pangkalan data, 2. Hentikan perkhidmatan MySQL semasa, 3. Pasang versi baru MySQL, 4. Mulakan versi baru MySQL Service, 5 pulih pangkalan data. Isu keserasian diperlukan semasa proses peningkatan, dan alat lanjutan seperti Perconatoolkit boleh digunakan untuk ujian dan pengoptimuman.

Dasar sandaran MySQL termasuk sandaran logik, sandaran fizikal, sandaran tambahan, sandaran berasaskan replikasi, dan sandaran awan. 1. Backup Logical menggunakan MySqldump untuk mengeksport struktur dan data pangkalan data, yang sesuai untuk pangkalan data kecil dan migrasi versi. 2. Sandaran fizikal adalah cepat dan komprehensif dengan menyalin fail data, tetapi memerlukan konsistensi pangkalan data. 3. Backup tambahan menggunakan pembalakan binari untuk merekodkan perubahan, yang sesuai untuk pangkalan data yang besar. 4. Sandaran berasaskan replikasi mengurangkan kesan ke atas sistem pengeluaran dengan menyokong dari pelayan. 5. Backup awan seperti Amazonrds menyediakan penyelesaian automasi, tetapi kos dan kawalan perlu dipertimbangkan. Apabila memilih dasar, saiz pangkalan data, toleransi downtime, masa pemulihan, dan matlamat titik pemulihan perlu dipertimbangkan.

Mysqlclusteringenhancesdatabaserobustnessandsandscalabilitybydistributingdataacrossmultiplenodes.itusesthendbenginefordatareplicationandfaulttolerance, ugeinghighavailability.setupinvolvesconfiguringmanagement, Data, dansqlnodes

Mengoptimumkan reka bentuk skema pangkalan data di MySQL dapat meningkatkan prestasi melalui langkah -langkah berikut: 1. Pengoptimuman indeks: Buat indeks pada lajur pertanyaan biasa, mengimbangi overhead pertanyaan dan memasukkan kemas kini. 2. Pengoptimuman Struktur Jadual: Mengurangkan kelebihan data melalui normalisasi atau anti-normalisasi dan meningkatkan kecekapan akses. 3. Pemilihan Jenis Data: Gunakan jenis data yang sesuai, seperti INT dan bukannya VARCHAR, untuk mengurangkan ruang penyimpanan. 4. Pembahagian dan Sub-meja: Untuk jumlah data yang besar, gunakan pembahagian dan sub-meja untuk menyebarkan data untuk meningkatkan kecekapan pertanyaan dan penyelenggaraan.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),
