


Docker Hands-on: Belajar Docker Compose Fail dengan Nodejs, Flask, PostgreSQL
Dalam siaran sebelumnya, kami menyebut tentang tutorial Docker masuk.
- https://dev.to/omerberatsezer/docker-tutorial-dockerfile-commands-container-images-volume-network-docker-compose-2p9h
Kali ini, kami mula menjalankan projek sampel: Memfokuskan pada fail Docker Compose dengan imej Nodejs, Flask, PostgreSQL untuk melaksanakan peringkat yang berbeza:
- bahagian hadapan (nodejs dengan expressjs),
- belakang (kelalang),
- pangkalan data (postgresql).
Ia menunjukkan:
- cara menjalankan berbilang bekas
- cara menjalankan bekas secara berurutan dengan depende_on
- cara menjalankan kontena dalam rangkaian yang sama
- cara mencipta volum dalam fail karang
- cara melaksanakan port-forwarding
Repo Kod GitHub: https://github.com/omerbsezer/Fast-Docker/tree/main/hands-on-sample-projects/full-stack-app
Struktur projek:
project-root/ ├── docker-compose.yaml ├── frontend/ │ ├── package.json │ ├── index.js │ ├── index.html │ ├── Dockerfile ├── backend/ │ ├── app.py │ ├── requirements.txt │ ├── Dockerfile
- Buat direktori bahagian hadapan, buat Fail Docker:
FROM node:18 WORKDIR /home/app COPY . . EXPOSE 3000 RUN npm install CMD ["npm", "start"]
- Buat index.html:
<meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Frontend</title> <h1 id="Frontend-is-working">Frontend is working!</h1>
- Buat index.js (express js):
const express = require("express"); const app = express(); const port=3000; app.get("/", (req, res) => { res.sendFile(__dirname + "/index.html"); }) app.listen(port, () => { console.log(`running at port ${port}`); });
- Buat package.json:
{ "name": "nodejsapp", "version": "1.0.0", "description": "nodejsapp description", "main": "index.js", "scripts": { "test": "echo \"Error: no test specified\" && exit 1", "start": "node index.js" }, "author": "", "license": "ISC", "dependencies": { "express": "^4.17.3" } }
- Kemudian, buat direktori backend, dan buat Dockerfile:
FROM python:3.11 WORKDIR /usr/src/app COPY . . RUN pip install -r requirements.txt EXPOSE 5000 CMD ["python", "app.py"]
- Buat apl bahagian belakang dengan kelalang:
from flask import Flask, jsonify app = Flask(__name__) @app.route('/') def home(): return "Backend is working!" @app.route('/api', methods=['GET']) def api(): return jsonify({"message": "Hello from the backend!"}) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
- Buat keperluan.txt:
flask
- Akhirnya buat docker-compose.yaml di atas direktori backend dan frontend:
services: frontend: build: context: ./frontend container_name: frontend ports: - "3000:3000" volumes: - ./frontend:/usr/src/app depends_on: - backend backend: build: context: ./backend container_name: backend ports: - "5000:5000" volumes: - ./backend:/usr/src/app command: sh -c "pip install -r requirements.txt && python app.py" db: image: postgres:15 container_name: db environment: POSTGRES_USER: user POSTGRES_PASSWORD: password POSTGRES_DB: mydatabase volumes: - db_data:/var/lib/postgresql/data ports: - "5432:5432" volumes: db_data:
- Kemudian, jalankan arahan pada tempat docker-compose.yaml:
user@docker:~$ docker compose up -d [+] Running 4/4 ✔ Network node_default Created 0.1s ✔ Container db Started 0.7s ✔ Container backend Started 0.7s ✔ Container frontend Started
- Kemudian, semak bahagian hadapan, hujung belakang dengan curl:
user@docker:~$ curl http://localhost:3000 <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Frontend</title> <h1 id="Frontend-is-working">Frontend is working!</h1> user@docker:~$ curl http://localhost:5000/api {"message":"Hello from the backend!"} user@docker:~$ curl http://localhost:5000 Backend is working!
- Akhir sekali, hentikan bekas:
user@docker:~$ docker ps -a CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 3e51751b546c node-frontend "docker-entrypoint.s…" About a minute ago Up About a minute 0.0.0.0:3000->3000/tcp, :::3000->3000/tcp frontend d8d28325ce10 postgres:15 "docker-entrypoint.s…" About a minute ago Up About a minute 0.0.0.0:5432->5432/tcp, :::5432->5432/tcp db 04c1d04a5668 node-backend "sh -c 'pip install …" About a minute ago Up About a minute 0.0.0.0:5000->5000/tcp, :::5000->5000/tcp backend user@docker:~$ docker compose down [+] Running 4/4 ✔ Container frontend Removed 1.0s ✔ Container db Removed 0.5s ✔ Container backend Removed 10.5s ✔ Network node_default Removed 0.2s user@docker:~$ docker ps -a CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
Kesimpulan
Siaran ini menunjukkan cara membuat fail karang Docker menggunakan apl contoh frontend (express.js), backend (flask), pangkalan data (postgresql). Sila lihat di bawah menu untuk kandungan Docker yang lain, jika anda belum pernah melihatnya.
Ikuti Petua, Tutorial, Makmal Hands-On untuk AWS, Kubernetes, Docker, Linux, DevOps, Ansible, Pembelajaran Mesin, Generatif AI, SAAS.
- https://github.com/omerbsezer/
- https://www.linkedin.com/in/omerberatsezer/
Atas ialah kandungan terperinci Docker Hands-on: Belajar Docker Compose Fail dengan Nodejs, Flask, PostgreSQL. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Memilih Python atau JavaScript harus berdasarkan perkembangan kerjaya, keluk pembelajaran dan ekosistem: 1) Pembangunan Kerjaya: Python sesuai untuk sains data dan pembangunan back-end, sementara JavaScript sesuai untuk pembangunan depan dan penuh. 2) Kurva Pembelajaran: Sintaks Python adalah ringkas dan sesuai untuk pemula; Sintaks JavaScript adalah fleksibel. 3) Ekosistem: Python mempunyai perpustakaan pengkomputeran saintifik yang kaya, dan JavaScript mempunyai rangka kerja front-end yang kuat.

Kuasa rangka kerja JavaScript terletak pada pembangunan yang memudahkan, meningkatkan pengalaman pengguna dan prestasi aplikasi. Apabila memilih rangka kerja, pertimbangkan: 1.

Pengenalan Saya tahu anda mungkin merasa pelik, apa sebenarnya yang perlu dilakukan oleh JavaScript, C dan penyemak imbas? Mereka seolah -olah tidak berkaitan, tetapi sebenarnya, mereka memainkan peranan yang sangat penting dalam pembangunan web moden. Hari ini kita akan membincangkan hubungan rapat antara ketiga -tiga ini. Melalui artikel ini, anda akan mempelajari bagaimana JavaScript berjalan dalam penyemak imbas, peranan C dalam enjin pelayar, dan bagaimana mereka bekerjasama untuk memacu rendering dan interaksi laman web. Kita semua tahu hubungan antara JavaScript dan penyemak imbas. JavaScript adalah bahasa utama pembangunan front-end. Ia berjalan secara langsung di penyemak imbas, menjadikan laman web jelas dan menarik. Adakah anda pernah tertanya -tanya mengapa Javascr

Node.js cemerlang pada I/O yang cekap, sebahagian besarnya terima kasih kepada aliran. Aliran memproses data secara berperingkat, mengelakkan beban memori-ideal untuk fail besar, tugas rangkaian, dan aplikasi masa nyata. Menggabungkan sungai dengan keselamatan jenis typescript mencipta powe

Perbezaan prestasi dan kecekapan antara Python dan JavaScript terutamanya dicerminkan dalam: 1) sebagai bahasa yang ditafsirkan, Python berjalan perlahan tetapi mempunyai kecekapan pembangunan yang tinggi dan sesuai untuk pembangunan prototaip pesat; 2) JavaScript adalah terhad kepada benang tunggal dalam penyemak imbas, tetapi I/O multi-threading dan asynchronous boleh digunakan untuk meningkatkan prestasi dalam node.js, dan kedua-duanya mempunyai kelebihan dalam projek sebenar.

JavaScript berasal pada tahun 1995 dan dicipta oleh Brandon Ike, dan menyedari bahasa itu menjadi C. 1.C Language menyediakan keupayaan pengaturcaraan prestasi tinggi dan sistem untuk JavaScript. 2. Pengurusan memori JavaScript dan pengoptimuman prestasi bergantung pada bahasa C. 3. Ciri lintas platform bahasa C membantu JavaScript berjalan dengan cekap pada sistem operasi yang berbeza.

JavaScript berjalan dalam penyemak imbas dan persekitaran Node.js dan bergantung pada enjin JavaScript untuk menghuraikan dan melaksanakan kod. 1) menjana pokok sintaks abstrak (AST) di peringkat parsing; 2) menukar AST ke bytecode atau kod mesin dalam peringkat penyusunan; 3) Laksanakan kod yang disusun dalam peringkat pelaksanaan.

Trend masa depan Python dan JavaScript termasuk: 1. Kedua -duanya akan terus mengembangkan senario aplikasi dalam bidang masing -masing dan membuat lebih banyak penemuan dalam prestasi.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.
