cari
Rumahpembangunan bahagian belakangTutorial PythonBina pembantu semakan kod AI dengan vev, litellm dan Agenta

Tutorial ini menunjukkan membina penyemak permintaan tarik AI sedia pengeluaran menggunakan amalan terbaik LLMOps. Aplikasi akhir, boleh diakses di sini, menerima URL PR awam dan mengembalikan ulasan yang dijana AI.

Build an AI code review assistant with vev, litellm and Agenta

Gambaran Keseluruhan Aplikasi

Tutorial ini merangkumi:

  • Pembangunan Kod: Mendapatkan semula PR berbeza daripada GitHub dan memanfaatkan LiteLLM untuk interaksi LLM.
  • Kebolehcerap: Melaksanakan Agenta untuk pemantauan dan penyahpepijatan aplikasi.
  • Kejuruteraan Segera: Mengulang pada gesaan dan pemilihan model menggunakan taman permainan Agenta.
  • Penilaian LLM: Menggunakan LLM-sebagai-hakim untuk penilaian segera dan model.
  • Pengerahan: Menggunakan aplikasi sebagai API dan mencipta UI mudah dengan v0.dev.

Logik Teras

Aliran kerja pembantu AI adalah mudah: diberikan URL PR, ia mendapatkan semula perbezaan daripada GitHub dan menyerahkannya kepada LLM untuk semakan.

Perbezaan GitHub diakses melalui:

<code>https://patch-diff.githubusercontent.com/raw/{owner}/{repo}/pull/{pr_number}.diff</code>

Fungsi Python ini mengambil perbezaan:

def get_pr_diff(pr_url):
    # ... (Code remains the same)
    return response.text

LiteLLM memudahkan interaksi LLM, menawarkan antara muka yang konsisten merentas pelbagai pembekal.

prompt_system = """
You are an expert Python developer performing a file-by-file review of a pull request. You have access to the full diff of the file to understand the overall context and structure. However, focus on reviewing only the specific hunk provided.
"""

prompt_user = """
Here is the diff for the file:
{diff}

Please provide a critique of the changes made in this file.
"""

def generate_critique(pr_url: str):
    diff = get_pr_diff(pr_url)
    response = litellm.completion(
        model=config.model,
        messages=[
            {"content": config.system_prompt, "role": "system"},
            {"content": config.user_prompt.format(diff=diff), "role": "user"},
        ],
    )
    return response.choices[0].message.content

Melaksanakan Kebolehmerhatian dengan Agenta

Agenta meningkatkan kebolehmerhatian, menjejak input, output dan aliran data untuk penyahpepijatan yang lebih mudah.

Mulakan Agenta dan konfigurasikan panggilan balik LiteLLM:

import agenta as ag

ag.init()
litellm.callbacks = [ag.callbacks.litellm_handler()]

Fungsi instrumen dengan penghias Agenta:

@ag.instrument()
def generate_critique(pr_url: str):
    # ... (Code remains the same)
    return response.choices[0].message.content

Tetapkan AGENTA_API_KEY pembolehubah persekitaran (diperolehi daripada Agenta) dan secara pilihan AGENTA_HOST untuk pengehosan sendiri.

Build an AI code review assistant with vev, litellm and Agenta

Mencipta Taman Permainan LLM

Ciri aliran kerja tersuai Agenta menyediakan taman permainan seperti IDE untuk pembangunan berulang. Coretan kod berikut menunjukkan konfigurasi dan penyepaduan dengan Agenta:

from pydantic import BaseModel, Field
from typing import Annotated
import agenta as ag
import litellm
from agenta.sdk.assets import supported_llm_models

# ... (previous code)

class Config(BaseModel):
    system_prompt: str = prompt_system
    user_prompt: str = prompt_user
    model: Annotated[str, ag.MultipleChoice(choices=supported_llm_models)] = Field(default="gpt-3.5-turbo")

@ag.route("/", config_schema=Config)
@ag.instrument()
def generate_critique(pr_url:str):
    diff = get_pr_diff(pr_url)
    config = ag.ConfigManager.get_from_route(schema=Config)
    response = litellm.completion(
        model=config.model,
        messages=[
            {"content": config.system_prompt, "role": "system"},
            {"content": config.user_prompt.format(diff=diff), "role": "user"},
        ],
    )
    return response.choices[0].message.content

Melayan dan Menilai dengan Agenta

  1. Jalankan agenta init menyatakan nama apl dan kunci API.
  2. Lari agenta variant serve app.py.

Ini menjadikan aplikasi boleh diakses melalui taman permainan Agenta untuk ujian hujung ke hujung. LLM-sebagai-hakim digunakan untuk penilaian. Gesaan penilai ialah:

<code>You are an evaluator grading the quality of a PR review.
CRITERIA: ... (criteria remain the same)
ANSWER ONLY THE SCORE. DO NOT USE MARKDOWN. DO NOT PROVIDE ANYTHING OTHER THAN THE NUMBER</code>

Gesaan pengguna untuk penilai:

<code>https://patch-diff.githubusercontent.com/raw/{owner}/{repo}/pull/{pr_number}.diff</code>

Build an AI code review assistant with vev, litellm and Agenta

Build an AI code review assistant with vev, litellm and Agenta

Pengerahan dan Frontend

Pengerahan dilakukan melalui UI Agenta:

  1. Navigasi ke halaman gambaran keseluruhan.
  2. Klik tiga titik di sebelah varian yang dipilih.
  3. Pilih "Kerahkan ke Pengeluaran".

Build an AI code review assistant with vev, litellm and Agenta

Halaman hadapan v0.dev telah digunakan untuk penciptaan UI yang pantas.

Langkah dan Kesimpulan Seterusnya

Peningkatan masa hadapan termasuk penghalusan segera, menggabungkan konteks kod penuh dan mengendalikan perbezaan yang besar. Tutorial ini berjaya menunjukkan membina, menilai dan menggunakan penyemak permintaan tarik AI sedia pengeluaran menggunakan Agenta dan LiteLLM.

Build an AI code review assistant with vev, litellm and Agenta

Atas ialah kandungan terperinci Bina pembantu semakan kod AI dengan vev, litellm dan Agenta. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Bagaimana tatasusunan digunakan dalam pengkomputeran saintifik dengan python?Bagaimana tatasusunan digunakan dalam pengkomputeran saintifik dengan python?Apr 25, 2025 am 12:28 AM

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Bagaimana anda mengendalikan versi python yang berbeza pada sistem yang sama?Bagaimana anda mengendalikan versi python yang berbeza pada sistem yang sama?Apr 25, 2025 am 12:24 AM

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Apakah beberapa kelebihan menggunakan array numpy melalui array python standard?Apakah beberapa kelebihan menggunakan array numpy melalui array python standard?Apr 25, 2025 am 12:21 AM

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation

Bagaimanakah sifat tatasusunan homogen mempengaruhi prestasi?Bagaimanakah sifat tatasusunan homogen mempengaruhi prestasi?Apr 25, 2025 am 12:13 AM

Kesan homogenitas tatasusunan pada prestasi adalah dwi: 1) homogenitas membolehkan pengkompil untuk mengoptimumkan akses memori dan meningkatkan prestasi; 2) tetapi mengehadkan kepelbagaian jenis, yang boleh menyebabkan ketidakcekapan. Singkatnya, memilih struktur data yang betul adalah penting.

Apakah beberapa amalan terbaik untuk menulis skrip python yang boleh dilaksanakan?Apakah beberapa amalan terbaik untuk menulis skrip python yang boleh dilaksanakan?Apr 25, 2025 am 12:11 AM

ToCraftExecutablePythonscripts, ikutiTheseBestPractics: 1) addAshebangline (#!/Usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3)

Bagaimanakah array numpy berbeza dari tatasusunan yang dibuat menggunakan modul array?Bagaimanakah array numpy berbeza dari tatasusunan yang dibuat menggunakan modul array?Apr 24, 2025 pm 03:53 PM

Numpyarraysarebetterfornumericationsoperationsandmulti-dimensialdata, whiletheArrayModuleissuitiableforbasic, ingatan-efisienArrays.1) numpyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2) thearrayModeMoremoremory-efficientModeMoremoremoremory-efficientModeMoremoremoremory-efficenceismemoremoremoremoremoremoremoremory-efficenceismemoremoremoremoremorem

Bagaimanakah penggunaan array Numpy berbanding dengan menggunakan array modul array di Python?Bagaimanakah penggunaan array Numpy berbanding dengan menggunakan array modul array di Python?Apr 24, 2025 pm 03:49 PM

NumpyarraysareBetterforheavynumericalcomputing, whilethearraymoduleismoresuitifFormemory-constrainedprojectswithsimpledatypes.1) numpyarraysofferversativilityandperformanceForlargedATAsetSandcomplexoperations.2)

Bagaimanakah modul CTYPES berkaitan dengan tatasusunan di Python?Bagaimanakah modul CTYPES berkaitan dengan tatasusunan di Python?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingc-stylearraysinpython.1) usectypestointerwithclibrariesforperformance.2) createec-stylearraysfornumericalcomputations.3) Passarraystocfuntionsforficientsoperations.however, becautiousofmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmem

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft