


Artikel ini memperincikan membina pelayan LLM tempatan yang didayakan suara dua hala menggunakan Python, perpustakaan Transformers, Qwen2-Audio-7B-Instruct dan Bark. Persediaan ini membenarkan interaksi suara yang diperibadikan.
Prasyarat:
Sebelum bermula, pastikan anda mempunyai Python 3.9 , PyTorch, Transformers, Accelerate (dalam beberapa kes), FFmpeg & pydub (pemprosesan audio), FastAPI (pelayan web), Uvicorn (pelayan FastAPI), Bark (teks ke pertuturan) ), Multipart, dan SciPy dipasang. Pasang FFmpeg menggunakan apt install ffmpeg
(Linux) atau brew install ffmpeg
(macOS). Kebergantungan Python boleh dipasang melalui pip install torch transformers accelerate pydub fastapi uvicorn bark python-multipart scipy
.
Langkah:
-
Persediaan Persekitaran: Mulakan persekitaran Python anda dan pilih peranti PyTorch (CUDA untuk GPU, CPU sebaliknya atau MPS untuk Apple Silicon, walaupun sokongan MPS mungkin terhad).
import torch device = 'cuda' if torch.cuda.is_available() else 'cpu'
-
Pemuatan Model: Muatkan model dan pemproses Qwen2-Audio-7B-Instruct. Untuk kejadian GPU awan (Runpod, Vast), tetapkan
HF_HOME
danXDG_CACHE_HOME
pembolehubah persekitaran kepada storan volum anda sebelum muat turun model. Pertimbangkan untuk menggunakan enjin inferens yang lebih pantas seperti vLLM dalam pengeluaran.from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration model_name = "Qwen/Qwen2-Audio-7B-Instruct" processor = AutoProcessor.from_pretrained(model_name) model = Qwen2AudioForConditionalGeneration.from_pretrained(model_name, device_map="auto").to(device)
-
Memuatkan Model Bark: Muatkan model teks-ke-ucapan Bark. Alternatif wujud, tetapi pilihan proprietari mungkin lebih mahal.
from bark import SAMPLE_RATE, generate_audio, preload_models preload_models()
Penggunaan VRAM gabungan adalah lebih kurang 24GB; gunakan model Qwen terkuantisasi jika perlu.
-
Persediaan Pelayan FastAPI: Cipta pelayan FastAPI dengan
/voice
dan/text
titik akhir masing-masing untuk input audio dan teks.from fastapi import FastAPI, UploadFile, Form from fastapi.responses import StreamingResponse import uvicorn app = FastAPI() # ... (API endpoints defined later) ... if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)
-
Pemprosesan Input Audio: Gunakan FFmpeg dan pydub untuk memproses audio masuk ke dalam format yang sesuai untuk model Qwen. Fungsi
audiosegment_to_float32_array
danload_audio_as_array
mengendalikan penukaran ini. -
Penjanaan Respons Qwen: Fungsi
generate_response
mengambil perbualan (termasuk audio atau teks) dan menggunakan model Qwen untuk menjana respons teks. Ia mengendalikan kedua-dua input audio dan teks melalui templat sembang pemproses. -
Penukaran Teks ke Pertuturan: Fungsi
text_to_speech
menggunakan Bark untuk menukar teks yang dijana kepada fail audio WAV. -
Penyepaduan Titik Akhir API: Titik akhir
/voice
dan/text
dilengkapkan untuk mengendalikan input, menjana respons menggunakangenerate_response
dan mengembalikan pertuturan yang disintesis menggunakantext_to_speech
sebagai StreamingResponse. -
Ujian: Gunakan
curl
untuk menguji pelayan:import torch device = 'cuda' if torch.cuda.is_available() else 'cpu'
Kod Lengkap: (Kod lengkap terlalu panjang untuk disertakan di sini, tetapi ia tersedia dalam gesaan asal. Coretan kod di atas menunjukkan bahagian utama.)
Aplikasi: Persediaan ini boleh digunakan sebagai asas untuk chatbots, ejen telefon, automasi sokongan pelanggan dan pembantu undang-undang.
Respon yang disemak ini memberikan penjelasan yang lebih berstruktur dan ringkas, menjadikannya lebih mudah untuk difahami dan dilaksanakan. Coretan kod lebih tertumpu pada aspek penting, sambil mengekalkan integriti maklumat asal.
Atas ialah kandungan terperinci Pengehosan LLM Buatan Sendiri dengan Sokongan Suara Dua Hala menggunakan Python, Transformers, Qwen dan Bark. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Tomergelistsinpython, operator youCanusethe, extendmethod, listcomprehension, oritertools.chain, eachwithspecificadvantages: 1) operatorSimpleButlessefficientficorlargelists;

Dalam Python 3, dua senarai boleh disambungkan melalui pelbagai kaedah: 1) Pengendali penggunaan, yang sesuai untuk senarai kecil, tetapi tidak cekap untuk senarai besar; 2) Gunakan kaedah Extend, yang sesuai untuk senarai besar, dengan kecekapan memori yang tinggi, tetapi akan mengubah suai senarai asal; 3) menggunakan * pengendali, yang sesuai untuk menggabungkan pelbagai senarai, tanpa mengubah suai senarai asal; 4) Gunakan itertools.chain, yang sesuai untuk set data yang besar, dengan kecekapan memori yang tinggi.

Menggunakan kaedah Join () adalah cara yang paling berkesan untuk menyambungkan rentetan dari senarai di Python. 1) Gunakan kaedah Join () untuk menjadi cekap dan mudah dibaca. 2) Kitaran menggunakan pengendali tidak cekap untuk senarai besar. 3) Gabungan pemahaman senarai dan menyertai () sesuai untuk senario yang memerlukan penukaran. 4) Kaedah mengurangkan () sesuai untuk jenis pengurangan lain, tetapi tidak cekap untuk penyambungan rentetan. Kalimat lengkap berakhir.

PythonexecutionistheprocessoftransformingpythoncodeIntoExecutableInstructions.1) TheinterpreterreadsTheCode, convertingIntoByteCode, yang mana -mana

Ciri -ciri utama Python termasuk: 1. Sintaks adalah ringkas dan mudah difahami, sesuai untuk pemula; 2. Sistem jenis dinamik, meningkatkan kelajuan pembangunan; 3. Perpustakaan standard yang kaya, menyokong pelbagai tugas; 4. Komuniti dan ekosistem yang kuat, memberikan sokongan yang luas; 5. Tafsiran, sesuai untuk skrip dan prototaip cepat; 6. Sokongan multi-paradigma, sesuai untuk pelbagai gaya pengaturcaraan.

Python adalah bahasa yang ditafsirkan, tetapi ia juga termasuk proses penyusunan. 1) Kod python pertama kali disusun ke dalam bytecode. 2) Bytecode ditafsirkan dan dilaksanakan oleh mesin maya Python. 3) Mekanisme hibrid ini menjadikan python fleksibel dan cekap, tetapi tidak secepat bahasa yang disusun sepenuhnya.

UseAforLoopWheniteratingOvereForforpecificNumbimes; Useaphileloopwhencontinuinguntilaconditionismet.forloopsareidealforknownownsequences, sementara yang tidak digunakan.

Pythonloopscanleadtoerrorslikeinfiniteloops, pengubahsuaianListsduringiteration, off-by-oneerrors, sifar-indexingissues, andnestedloopinefficies.toavoidthese: 1) use'i


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).
