Rumah >pembangunan bahagian belakang >Tutorial Python >Membina Rakan Belajar Diperibadikan Menggunakan Amazon Bedrock

Membina Rakan Belajar Diperibadikan Menggunakan Amazon Bedrock

Barbara Streisand
Barbara Streisandasal
2025-01-04 20:25:41670semak imbas

Building a Personalized Study Companion Using Amazon Bedrock

Saya dalam program ijazah sarjana saya sekarang, dan saya sentiasa mahu mencari jalan untuk mengurangkan waktu pembelajaran saya setiap hari. Voila! Inilah penyelesaian saya: mencipta rakan belajar menggunakan Amazon Bedrock.

Kami akan memanfaatkan Amazon Bedrock untuk memanfaatkan kuasa model asas (FM) seperti GPT-4 atau T5.

Model ini akan membantu kami mencipta AI generatif yang boleh menjawab pertanyaan pengguna tentang pelbagai topik dalam program sarjana saya seperti Fizik Kuantum, Pembelajaran Mesin dan banyak lagi. Kami akan meneroka cara memperhalusi model, melaksanakan kejuruteraan segera termaju dan memanfaatkan Penjanaan Dipertingkatkan Semula (RAG) untuk memberikan jawapan yang tepat kepada pelajar.

Mari kita ke dalamnya!

Langkah 1: Sediakan Persekitaran Anda pada AWS

Sebagai permulaan, pastikan akaun AWS anda disediakan dengan kebenaran yang diperlukan untuk mengakses Amazon Bedrock, S3 dan Lambda (saya mengetahuinya dengan cara yang sukar selepas saya mengetahui saya perlu memasukkan kad debit saya :( ) . Anda akan bekerja dengan perkhidmatan AWS seperti Amazon S3, Lambda dan Bedrock.

  • Buat Baldi S3 untuk menyimpan bahan kajian anda
  • Ini akan membolehkan model mengakses bahan untuk penalaan halus dan perolehan semula.
  • Pergi ke Amazon S3 Console dan buat baldi baharu, cth., "bahan kajian".

Muat naik Kandungan Pendidikan ke S3. Dalam kes saya, saya mencipta data sintetik untuk menambah yang berkaitan dengan program tuan saya. Anda boleh membuat sendiri berdasarkan keperluan anda atau menambah set data lain daripada Kaggle.

[
    {
        "topic": "Advanced Economics",
        "question": "How does the Lucas Critique challenge traditional macroeconomic policy analysis?",
        "answer": "The Lucas Critique argues that traditional macroeconomic models' parameters are not policy-invariant because economic agents adjust their behavior based on expected policy changes, making historical relationships unreliable for policy evaluation."
    },
    {
        "topic": "Quantum Physics",
        "question": "Explain quantum entanglement and its implications for quantum computing.",
        "answer": "Quantum entanglement is a physical phenomenon where pairs of particles remain fundamentally connected regardless of distance. This property enables quantum computers to perform certain calculations exponentially faster than classical computers through quantum parallelism and superdense coding."
    },
    {
        "topic": "Advanced Statistics",
        "question": "What is the difference between frequentist and Bayesian approaches to statistical inference?",
        "answer": "Frequentist inference treats parameters as fixed and data as random, using probability to describe long-run frequency of events. Bayesian inference treats parameters as random variables with prior distributions, updated through data to form posterior distributions, allowing direct probability statements about parameters."
    },
    {
        "topic": "Machine Learning",
        "question": "How do transformers solve the long-range dependency problem in sequence modeling?",
        "answer": "Transformers use self-attention mechanisms to directly model relationships between all positions in a sequence, eliminating the need for recurrent connections. This allows parallel processing and better capture of long-range dependencies through multi-head attention and positional encodings."
    },
    {
        "topic": "Molecular Biology",
        "question": "What are the implications of epigenetic inheritance for evolutionary theory?",
        "answer": "Epigenetic inheritance challenges the traditional neo-Darwinian model by demonstrating that heritable changes in gene expression can occur without DNA sequence alterations, suggesting a Lamarckian component to evolution through environmentally-induced modifications."
    },
    {
        "topic": "Advanced Computer Architecture",
        "question": "How do non-volatile memory architectures impact traditional memory hierarchy design?",
        "answer": "Non-volatile memory architectures blur the traditional distinction between storage and memory, enabling persistent memory systems that combine storage durability with memory-like performance, requiring fundamental redesign of memory hierarchies and system software."
    }
]

Langkah 2: Manfaatkan Batuan Dasar Amazon untuk Model Asas

Lancarkan Amazon Bedrock kemudian:

  • Pergi ke Amazon Bedrock Console.
  • Buat projek baharu dan pilih model asas yang anda inginkan (cth., GPT-3, T5).
  • Pilih kes penggunaan anda, dalam kes ini, rakan belajar.
  • Pilih pilihan Penalaan Halus (jika perlu) dan muat naik set data (kandungan pendidikan anda daripada S3) untuk penalaan halus.
  • Memperhalusi Model Asas:

Bahan asas akan memperhalusi model asas pada set data anda secara automatik. Contohnya, jika anda menggunakan GPT-3, Amazon Bedrock akan menyesuaikannya untuk lebih memahami kandungan pendidikan dan menjana jawapan yang tepat untuk topik tertentu.

Berikut ialah coretan kod Python pantas menggunakan Amazon Bedrock SDK untuk memperhalusi model:

import boto3

# Initialize Bedrock client
client = boto3.client("bedrock-runtime")

# Define S3 path for your dataset
dataset_path = 's3://study-materials/my-educational-dataset.json'

# Fine-tune the model
response = client.start_training(
    modelName="GPT-3",
    datasetLocation=dataset_path,
    trainingParameters={"batch_size": 16, "epochs": 5}
)
print(response)

Simpan Model Ditala Halus: Selepas penalaan halus, model disimpan dan sedia untuk digunakan. Anda boleh menemuinya dalam baldi Amazon S3 anda di bawah folder baharu yang dipanggil fine-tala-model.

Langkah 3: Laksanakan Retrieval-Augmented Generation (RAG)

1. Sediakan Fungsi Amazon Lambda:

  • Lambda akan mengendalikan permintaan dan berinteraksi dengan model yang diperhalusi untuk menjana respons.
  • Fungsi Lambda akan mengambil bahan kajian yang berkaitan daripada S3 berdasarkan pertanyaan pengguna dan menggunakan RAG untuk menjana jawapan yang tepat.

Kod Lambda untuk Penjanaan Jawapan: Berikut ialah contoh cara anda boleh mengkonfigurasi fungsi Lambda untuk menggunakan model yang diperhalusi untuk menjana jawapan:

[
    {
        "topic": "Advanced Economics",
        "question": "How does the Lucas Critique challenge traditional macroeconomic policy analysis?",
        "answer": "The Lucas Critique argues that traditional macroeconomic models' parameters are not policy-invariant because economic agents adjust their behavior based on expected policy changes, making historical relationships unreliable for policy evaluation."
    },
    {
        "topic": "Quantum Physics",
        "question": "Explain quantum entanglement and its implications for quantum computing.",
        "answer": "Quantum entanglement is a physical phenomenon where pairs of particles remain fundamentally connected regardless of distance. This property enables quantum computers to perform certain calculations exponentially faster than classical computers through quantum parallelism and superdense coding."
    },
    {
        "topic": "Advanced Statistics",
        "question": "What is the difference between frequentist and Bayesian approaches to statistical inference?",
        "answer": "Frequentist inference treats parameters as fixed and data as random, using probability to describe long-run frequency of events. Bayesian inference treats parameters as random variables with prior distributions, updated through data to form posterior distributions, allowing direct probability statements about parameters."
    },
    {
        "topic": "Machine Learning",
        "question": "How do transformers solve the long-range dependency problem in sequence modeling?",
        "answer": "Transformers use self-attention mechanisms to directly model relationships between all positions in a sequence, eliminating the need for recurrent connections. This allows parallel processing and better capture of long-range dependencies through multi-head attention and positional encodings."
    },
    {
        "topic": "Molecular Biology",
        "question": "What are the implications of epigenetic inheritance for evolutionary theory?",
        "answer": "Epigenetic inheritance challenges the traditional neo-Darwinian model by demonstrating that heritable changes in gene expression can occur without DNA sequence alterations, suggesting a Lamarckian component to evolution through environmentally-induced modifications."
    },
    {
        "topic": "Advanced Computer Architecture",
        "question": "How do non-volatile memory architectures impact traditional memory hierarchy design?",
        "answer": "Non-volatile memory architectures blur the traditional distinction between storage and memory, enabling persistent memory systems that combine storage durability with memory-like performance, requiring fundamental redesign of memory hierarchies and system software."
    }
]

3. Letak Fungsi Lambda: Letak fungsi Lambda ini pada AWS. Ia akan digunakan melalui API Gateway untuk mengendalikan pertanyaan pengguna masa nyata.

Langkah 4: Dedahkan Model melalui Gerbang API

Buat Gerbang API:

Pergi ke API Gateway Console dan buat API REST baharu.
Sediakan titik akhir POST untuk menggunakan fungsi Lambda anda yang mengendalikan penjanaan jawapan.

Gunakan API:

Letakkan API dan jadikan ia boleh diakses secara umum dengan menggunakan domain tersuai atau URL lalai daripada AWS.

Langkah 5: Bina Antara Muka Menipis

Akhir sekali, bina apl Streamlit mudah untuk membolehkan pengguna berinteraksi dengan teman belajar anda.

import boto3

# Initialize Bedrock client
client = boto3.client("bedrock-runtime")

# Define S3 path for your dataset
dataset_path = 's3://study-materials/my-educational-dataset.json'

# Fine-tune the model
response = client.start_training(
    modelName="GPT-3",
    datasetLocation=dataset_path,
    trainingParameters={"batch_size": 16, "epochs": 5}
)
print(response)

Anda boleh mengehos apl strim ini pada AWS EC2 atau Elastic Beanstalk.

Jika semuanya berfungsi dengan baik tahniah. Awak baru jadi teman belajar awak. Jika saya terpaksa menilai projek ini, saya boleh menambah beberapa lagi contoh untuk data sintetik saya (duh??) atau mendapatkan set data pendidikan lain yang sejajar dengan matlamat saya dengan sempurna.

Terima kasih kerana membaca! Beritahu saya pendapat anda!

Atas ialah kandungan terperinci Membina Rakan Belajar Diperibadikan Menggunakan Amazon Bedrock. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Artikel sebelumnya:Pengenalan Rio MinimalArtikel seterusnya:Pengenalan Rio Minimal