Beli Saya Kopi☕
*Memo:
- Siaran saya menerangkan pow().
- Siaran saya menerangkan float_power().
- Siaran saya menerangkan abs() dan sqrt().
- Siaran saya menerangkan gcd() dan lcm().
- Siaran saya menerangkan trace(), reciprocal() dan rsqrt().
persegi() boleh mendapatkan tensor 0D atau lebih D bagi sifar kuasa dua atau lebih elemen, mendapatkan tensor 0D atau lebih D bagi sifar atau lebih elemen seperti yang ditunjukkan di bawah:
*Memo:
- square() boleh digunakan dengan obor atau tensor.
- Argumen(input) pertama dengan obor atau menggunakan tensor(Jenis Diperlukan:tensor int, float, kompleks atau bool).
- Terdapat hujah dengan obor(Pilihan-Lalai:Tiada-Jenis:tensor):
*Memo:
- out= mesti digunakan.
- Siaran saya menerangkan hujah.
import torch my_tensor = torch.tensor(-3) torch.square(input=my_tensor) my_tensor.square() # tensor(9) my_tensor = torch.tensor([-3, 1, -2, 3, 5, -5, 0, -4]) torch.square(input=my_tensor) # tensor([9, 1, 4, 9, 25, 25, 0, 16]) my_tensor = torch.tensor([[-3, 1, -2, 3], [5, -5, 0, -4]]) torch.square(input=my_tensor) # tensor([[9, 1, 4, 9], # [25, 25, 0, 16]]) my_tensor = torch.tensor([[[-3, 1], [-2, 3]], [[5, -5], [0, -4]]]) torch.square(input=my_tensor) # tensor([[[9, 1], [4, 9]], # [[25, 25], [0, 16]]]) my_tensor = torch.tensor([[[-3., 1.], [-2., 3.]], [[5., -5.], [0., -4.]]]) torch.square(input=my_tensor) # tensor([[[9., 1.], [4., 9.]], # [[25., 25.], [0., 16.]]]) my_tensor = torch.tensor([[[-3.+0.j, 1.+0.j], [-2.+0.j, 3.+0.j]], [[5.+0.j, -5.+0.j], [0.+0.j, -4.+0.j]]]) torch.square(input=my_tensor) # tensor([[[9.-0.j, 1.+0.j], [4.-0.j, 9.+0.j]], # [[25.+0.j, 25.-0.j], [0.+0.j, 16.-0.j]]]) my_tensor = torch.tensor([[[True, False], [True, False]], [[False, True], [False, True]]]) torch.square(input=my_tensor) # tensor([[[1, 0], [1, 0]], # [[0, 1], [0, 1]]])
Atas ialah kandungan terperinci segi empat sama dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

ToAppendElementStoapyThonList, useTheAppend () methodforsingleelements, extend () formultipleelements, andInsert () forspecificposition.1) useAppend () foraddingOneElementAttheend.2)

TOCREATEAPYTHONLIST, USESQUAREBRACKETS [] danSeparatateItemSwithCommas.1) listsaredynamicandCanHoldMixedDatypes.2) UseAppend (), mengalih keluar (), danSlicingFormApulation.3)

Dalam bidang kewangan, penyelidikan saintifik, penjagaan perubatan dan AI, adalah penting untuk menyimpan dan memproses data berangka dengan cekap. 1) Dalam Kewangan, menggunakan memori yang dipetakan fail dan perpustakaan Numpy dapat meningkatkan kelajuan pemprosesan data dengan ketara. 2) Dalam bidang penyelidikan saintifik, fail HDF5 dioptimumkan untuk penyimpanan data dan pengambilan semula. 3) Dalam penjagaan perubatan, teknologi pengoptimuman pangkalan data seperti pengindeksan dan pembahagian meningkatkan prestasi pertanyaan data. 4) Dalam AI, data sharding dan diedarkan latihan mempercepatkan latihan model. Prestasi dan skalabiliti sistem dapat ditingkatkan dengan ketara dengan memilih alat dan teknologi yang tepat dan menimbang perdagangan antara kelajuan penyimpanan dan pemprosesan.

Pythonarraysarecreatedusingthearraymodule, notbuilt-inlikelists.1) importTheArrayModule.2) specifythetypecode, cth., 'I'forintegers.3) Initializewithvalues.arraysofferbettermemoryficiencyficorhomogeneousdatabutflex.

Sebagai tambahan kepada garis shebang, terdapat banyak cara untuk menentukan penterjemah python: 1. Gunakan perintah python terus dari baris arahan; 2. Gunakan fail batch atau skrip shell; 3. Gunakan alat binaan seperti membuat atau cmake; 4. Gunakan pelari tugas seperti Invoke. Setiap kaedah mempunyai kelebihan dan kekurangannya, dan penting untuk memilih kaedah yang sesuai dengan keperluan projek.

Forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-efisien danfasterfornumumerical.2) mengelakkan yang tidak dapat dipertahankan.3)

Inpython, listsusedynamicMemoryAllocationwithover-peruntukan, pemecahan yang tidak dapat dilaksanakan.1) listsallocatemoremoremorythanneedinitial, resizingwhennessary.2) numpyarraysallocateExactMemoreForelements, menawarkanpredictableSabeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeat.

Inpython, YouCansspectHedatypeyFeleMeremodelerernspant.1) Usenpynernrump.1) usenpynerp.dloatp.ploatm64, formor preciscontrolatatypes.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)
