Beli Saya Kopi☕
*Memo:
- Siaran saya menerangkan arange().
- Siaran saya menerangkan ruang log().
linspace() boleh mencipta tensor 1D bagi sifar atau lebih integer, nombor titik terapung atau nombor kompleks dijarakkan sama rata antara mula dan tamat(mula
*Memo:
- linspace() boleh digunakan dengan obor tetapi tidak dengan tensor.
- Argumen pertama dengan obor adalah mula (Jenis-Diperlukan:int, float, kompleks atau bool). *Tensor 0D int, float, kompleks atau bool juga berfungsi.
- Hujah ke-2 dengan obor adalah tamat(Jenis-Diperlukan:int, float, kompleks atau bool). *Tensor 0D int, float, kompleks atau bool juga berfungsi.
- Argumen ke-3 dengan obor ialah langkah(Jenis-Diperlukan:int):
*Memo:
- Ia mestilah lebih besar daripada atau sama dengan 0.
- Tensor 0D int juga berfungsi.
- Terdapat hujah dtype dengan obor(Optional-Default:None-Type:dtype):
*Memo:
- Jika Tiada, ia disimpulkan dari mula, akhir atau langkah, kemudian untuk nombor titik terapung, get_default_dtype() digunakan. *Siaran saya menerangkan get_default_dtype() dan set_default_dtype().
- Menetapkan permulaan dan tamat jenis integer tidak mencukupi untuk mencipta tensor 1D jenis integer jadi jenis integer dengan dtype mesti ditetapkan.
- dtype= mesti digunakan.
- Siaran saya menerangkan hujah dtype.
- Terdapat hujah peranti dengan obor(Optional-Default:None-Type:str, int or device()):
*Memo:
- Jika Tiada, get_default_device() digunakan. *Siaran saya menerangkan get_default_device() dan set_default_device().
- peranti= mesti digunakan.
- Siaran saya menerangkan hujah peranti.
- Terdapat hujah require_grad dengan obor(Optional-Default:False-Type:bool):
*Memo:
- require_grad= mesti digunakan.
- Siaran saya menerangkan hujah require_grad.
- Terdapat hujah dengan obor(Pilihan-Lalai:Tiada-Jenis:tensor):
*Memo:
- out= mesti digunakan.
- Siaran saya menerangkan hujah.
import torch torch.linspace(start=10, end=20, steps=0) torch.linspace(start=20, end=10, steps=0) # tensor([]) torch.linspace(start=10., end=20., steps=1) tensor([10.]) torch.linspace(start=20, end=10, steps=1) # tensor([20.]) torch.linspace(start=10., end=20., steps=2) # tensor([10., 20.]) torch.linspace(start=20, end=10, steps=2) # tensor([20., 10.]) torch.linspace(start=10., end=20., steps=3) # tensor([10., 15., 20.]) torch.linspace(start=20, end=10, steps=3) # tensor([20., 15., 10.]) torch.linspace(start=10., end=20., steps=4) # tensor([10.0000, 13.3333, 16.6667, 20.0000]) torch.linspace(start=20., end=10., steps=4) # tensor([20.0000, 16.6667, 13.3333, 10.0000]) torch.linspace(start=10, end=20, steps=4, dtype=torch.int64) torch.linspace(start=torch.tensor(10), end=torch.tensor(20), steps=torch.tensor(4), dtype=torch.int64) # tensor([10.0000, 13.3333, 16.6667, 20.0000]) torch.linspace(start=10.+6.j, end=20.+3.j, steps=4) torch.linspace(start=torch.tensor(10.+6.j), end=torch.tensor(20.+3.j), steps=torch.tensor(4)) # tensor([10.0000+6.j, 13.3333+5.j, 16.6667+4.j, 20.0000+3.j]) torch.linspace(start=False, end=True, steps=4) torch.linspace(start=torch.tensor(True), end=torch.tensor(False), steps=torch.tensor(4)) # tensor([0.0000, 0.3333, 0.6667, 1.0000]) torch.linspace(start=10, end=20, steps=4, dtype=torch.int64) torch.linspace(start=torch.tensor(10), end=torch.tensor(20), steps=torch.tensor(4), dtype=torch.int64) # tensor([10.0000, 13.3333, 16.6667, 20.0000])
Atas ialah kandungan terperinci linspace dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Pythonlistsareimplementedasdynamicarrays, notlinkedlists.1) thearestoredincontiguousmemoryblocks, yangMayrequireReAllocationWhenAppendingItems, ImpactingPormance.2) LinkedListSwouldOfferefficientInsertions/DeletionsButsCoweCcess

PythonoffersfourmainmethodstoremoveelementsFromalist: 1) Keluarkan (nilai) RemoveStHefirStoccurrenceFavalue, 2) Pop (index) RemoveRandReturnSanelementAtaspeciedIndex, 3)

Ralat toresolvea "kebenaran" yang mana -mana, berikut: 1) checkandadjustthescript'spermissionsingchmod xmyscript.shtomakeitexecutable.2) EnsurethescriptislocatedInadirectoryHeryouhaveVerPiSs, suchasyoursory, suchasyourshy, suchasyourperhysh, suchasyourshy.

ArraysarecrucialinpythonimageProcessingastheyenableefficientmanipulationandanalysisysysyisfimagedata.1) imagesareconvertedtonumpyarrays, walikasicaleimagesas2darraysandcolorimagesas3darrays.2) ArraysAllowForveSbeBerat

ArraysaresinicantantlyfasterthanlistsforoperationsbenefitingFromDirectMemoryAccessandFixed-Sizestructures.1) AccessingingElements: arraysprovideConstant-timeaccessduetocontiguousmemoryStorage.2)

ArraysareBetterforelement-wiseoperationsduetofasteraccessandoptimizedImplementations.1) arrayshavecontiguousmemoryfordirectaccess, enhancingperformance.2) listsareflexibleButslowerduetopotentiahyiLys.3)

Operasi matematik keseluruhan array di Numpy dapat dilaksanakan dengan cekap melalui operasi vektor. 1) Gunakan pengendali mudah seperti tambahan (ARR 2) untuk melaksanakan operasi pada tatasusunan. 2) Numpy menggunakan perpustakaan bahasa C yang mendasari, yang meningkatkan kelajuan pengkomputeran. 3) Anda boleh melakukan operasi kompleks seperti pendaraban, pembahagian, dan eksponen. 4) Perhatikan operasi penyiaran untuk memastikan bahawa bentuk array bersesuaian. 5) Menggunakan fungsi numpy seperti np.sum () dapat meningkatkan prestasi dengan ketara.

Di Python, terdapat dua kaedah utama untuk memasukkan elemen ke dalam senarai: 1) Menggunakan kaedah memasukkan (indeks, nilai), anda boleh memasukkan elemen pada indeks yang ditentukan, tetapi memasukkan pada permulaan senarai besar tidak cekap; 2) Menggunakan kaedah append (nilai), tambahkan elemen pada akhir senarai, yang sangat berkesan. Untuk senarai besar, disarankan untuk menggunakan append () atau pertimbangkan menggunakan array deque atau numpy untuk mengoptimumkan prestasi.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

Dreamweaver Mac版
Alat pembangunan web visual

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini
