


Menjana Pembahagian Set
Membahagikan set kepada subset yang berbeza, dikenali sebagai partition, ialah operasi matematik yang biasa. Artikel ini menyelidiki kaedah yang cekap untuk membahagikan set, memastikan tiada pendua timbul disebabkan oleh ketidakrelevanan susunan.
Pendekatan Rekursif
Penyelesaian kami menggunakan strategi rekursif, bermula dengan senario paling mudah: membahagikan kepada dua bahagian. Dengan mewakili setiap elemen sebagai sedikit (0 untuk bahagian pertama dan 1 untuk bahagian kedua), kami mengelakkan hasil pendua dengan meletakkan elemen pertama secara konsisten di bahagian pertama.
Seterusnya, kami menyelidiki fungsi rekursif yang menangani partition yang lebih kompleks. Fungsi ini beroperasi pada set asal, mencari semua partition dua bahagian. Bahagian kedua setiap partition dipisahkan secara rekursif kepada dua bahagian, menghasilkan partition tiga bahagian. Proses ini berterusan sehingga keseluruhan set dibahagikan.
Pelaksanaan
Di bawah ialah pelaksanaan C# bagi algoritma pembahagian:
using System; using System.Collections.Generic; using System.Linq; namespace PartitionTest { public static class Partitioning { public static IEnumerable<t> GetAllPartitions<t>(T[] elements) { return GetAllPartitions(new T[][]{}, elements); } private static IEnumerable<t> GetAllPartitions<t>( T[][] fixedParts, T[] suffixElements) { // A trivial partition consists of the fixed parts // followed by all suffix elements as one block yield return fixedParts.Concat(new[] { suffixElements }).ToArray(); // Get all two-group-partitions of the suffix elements // and sub-divide them recursively var suffixPartitions = GetTuplePartitions(suffixElements); foreach (Tuple<t t> suffixPartition in suffixPartitions) { var subPartitions = GetAllPartitions( fixedParts.Concat(new[] { suffixPartition.Item1 }).ToArray(), suffixPartition.Item2); foreach (var subPartition in subPartitions) { yield return subPartition; } } } private static IEnumerable<tuple t>> GetTuplePartitions<t>( T[] elements) { // No result if less than 2 elements if (elements.Length [] resultSets = { new List<t> { elements[0] }, new List<t>() }; // Distribute the remaining elements for (int index = 1; index > (index - 1)) & 1].Add(elements[index]); } yield return Tuple.Create( resultSets[0].ToArray(), resultSets[1].ToArray()); } } } }</t></t></t></tuple></t></t></t></t></t>
Memajukan Pembahagian .GetAllPartitions(new[] { 1, 2, 3, 4 }) menjana yang berikut sekatan:
{ {1, 2, 3, 4} }, { {1, 3, 4}, {2} }, { {1, 2, 4}, {3} }, { {1, 4}, {2, 3} }, { {1, 4}, {2}, {3} }, { {1, 2, 3}, {4} }, { {1, 3}, {2, 4} }, { {1, 3}, {2}, {4} }, { {1, 2}, {3, 4} }, { {1, 2}, {3}, {4} }, { {1}, {2, 3, 4} }, { {1}, {2, 4}, {3} }, { {1}, {2, 3}, {4} }, { {1}, {2}, {3, 4} }, { {1}, {2}, {3}, {4} }.
Atas ialah kandungan terperinci Bagaimana untuk Menjana Semua Pembahagian Set Dengan Cekap Menggunakan Pendekatan Rekursif dalam C#?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Menguasai polimorfisme dalam C dapat meningkatkan fleksibiliti dan pemeliharaan kod dengan ketara. 1) Polimorfisme membolehkan pelbagai jenis objek dianggap sebagai objek jenis asas yang sama. 2) Melaksanakan polimorfisme runtime melalui warisan dan fungsi maya. 3) Polimorfisme menyokong lanjutan kod tanpa mengubahsuai kelas sedia ada. 4) Menggunakan CRTP untuk melaksanakan polimorfisme kompilasi masa dapat meningkatkan prestasi. 5) Penunjuk pintar membantu pengurusan sumber. 6) Kelas asas harus mempunyai pemusnah maya. 7) Pengoptimuman prestasi memerlukan analisis kod terlebih dahulu.

D destructorsprovideprecisecontroloverresourcemanagement, whisgagecollectorsautomatemememorymanagementmentbutintroduceunpredictability.c destructors: 1) membolehkancustomcleanupactionswhenobjectsaredestroyed, 2) releasereshenobjectsoThenobjects

Mengintegrasikan XML dalam projek C boleh dicapai melalui langkah-langkah berikut: 1) Menguraikan dan menghasilkan fail XML menggunakan PuGixML atau Perpustakaan TinyXML, 2) Pilih kaedah DOM atau SAX untuk parsing, 3) mengendalikan nod bersarang dan sifat berbilang level,

XML digunakan dalam C kerana ia menyediakan cara yang mudah untuk menyusun data, terutamanya dalam fail konfigurasi, penyimpanan data dan komunikasi rangkaian. 1) Pilih perpustakaan yang sesuai, seperti TinyXML, PugixML, RapidXML, dan tentukan mengikut keperluan projek. 2) Memahami dua cara parsing dan generasi XML: DOM sesuai untuk akses dan pengubahsuaian yang kerap, dan SAX sesuai untuk fail besar atau data streaming. 3) Apabila mengoptimumkan prestasi, TinyXML sesuai untuk fail kecil, PuGixML berfungsi dengan baik dalam ingatan dan kelajuan, dan RapidXML sangat baik dalam memproses fail besar.

Perbezaan utama antara C# dan C ialah pengurusan memori, pelaksanaan polimorfisme dan pengoptimuman prestasi. 1) C# menggunakan pemungut sampah untuk mengurus memori secara automatik, sementara C perlu diuruskan secara manual. 2) C# menyedari polimorfisme melalui antara muka dan kaedah maya, dan C menggunakan fungsi maya dan fungsi maya murni. 3) Pengoptimuman prestasi C# bergantung kepada struktur dan pengaturcaraan selari, manakala C dilaksanakan melalui fungsi inline dan multithreading.

Kaedah DOM dan SAX boleh digunakan untuk menghuraikan data XML dalam C. 1) DOM Parsing beban XML ke dalam ingatan, sesuai untuk fail kecil, tetapi mungkin mengambil banyak ingatan. 2) Parsing Sax didorong oleh peristiwa dan sesuai untuk fail besar, tetapi tidak dapat diakses secara rawak. Memilih kaedah yang betul dan mengoptimumkan kod dapat meningkatkan kecekapan.

C digunakan secara meluas dalam bidang pembangunan permainan, sistem tertanam, urus niaga kewangan dan pengkomputeran saintifik, kerana prestasi dan fleksibiliti yang tinggi. 1) Dalam pembangunan permainan, C digunakan untuk rendering grafik yang cekap dan pengkomputeran masa nyata. 2) Dalam sistem tertanam, pengurusan memori dan keupayaan kawalan perkakasan C menjadikannya pilihan pertama. 3) Dalam bidang urus niaga kewangan, prestasi tinggi C memenuhi keperluan pengkomputeran masa nyata. 4) Dalam pengkomputeran saintifik, pelaksanaan algoritma yang cekap C dan keupayaan pemprosesan data sepenuhnya dicerminkan.

C tidak mati, tetapi telah berkembang dalam banyak bidang utama: 1) pembangunan permainan, 2) pengaturcaraan sistem, 3) pengkomputeran berprestasi tinggi, 4) pelayar dan aplikasi rangkaian, C masih pilihan arus perdana, menunjukkan senario vitalitas dan aplikasi yang kuat.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).
