Beli Saya Kopi☕
ColorJitter() boleh menukar kecerahan, kontras, ketepuan dan rona sifar atau lebih imej seperti yang ditunjukkan di bawah:
*Memo:
- Argumen pertama untuk permulaan ialah kecerahan(Pilihan-Lalai:0-Jenis:float atau tuple/list(float)):
*Memo:
- Ia ialah julat kecerahan [min, maks].
- Mestilah 0
- Satu nilai ditukar kepada [maks(0, 1-kecerahan), 1 kecerahan].
- Tuple atau senarai mestilah 1D dengan 2 elemen. *Elemen pertama mestilah kurang daripada atau sama dengan elemen ke-2.
- Argumen ke-2 untuk permulaan ialah contrast(Optional-Default:0-Type:float or tuple/list(float)):
*Memo:
- Ia ialah julat kontras [min, maks].
- Mestilah 0
- Satu nilai ditukar kepada [maks(0, 1-kontras), 1 kontras].
- Tuple atau senarai mestilah 1D dengan 2 elemen. *Elemen pertama mestilah kurang daripada atau sama dengan elemen ke-2.
- Argumen ke-3 untuk permulaan ialah ketepuan(Pilihan-Lalai:0-Jenis:float atau tuple/list(float)):
*Memo:
- Ia ialah julat ketepuan [min, maks].
- Mestilah 0
- Satu nilai ditukar kepada [maks(0, 1-tepu), 1 tepu].
- Tuple atau senarai mestilah 1D dengan 2 elemen. *Elemen pertama mestilah kurang daripada atau sama dengan elemen ke-2.
- Argumen ke-4 untuk permulaan ialah hue(Optional-Default:0-Type:float or tuple/list(float)):
*Memo:
- Ia ialah julat rona [min, maks].
- Ia mestilah -0.5
- Satu nilai ditukar kepada [-hue, hue].
- Tuple atau senarai mestilah 1D dengan 2 elemen. *Elemen pertama mestilah kurang daripada atau sama dengan elemen ke-2.
- Argumen pertama ialah img(Required-Type:PIL Image or tensor/tuple/list(int or float)):
*Memo:
- Ia mestilah 2D atau 3D. Untuk 3D, D terdalam mesti mempunyai satu elemen.
- Jangan gunakan img=.
- v2 disyorkan untuk digunakan mengikut V1 atau V2? Mana satu patut saya guna?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
Atas ialah kandungan terperinci ColorJitter dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Tomergelistsinpython, operator youCanusethe, extendmethod, listcomprehension, oritertools.chain, eachwithspecificadvantages: 1) operatorSimpleButlessefficientficorlargelists;

Dalam Python 3, dua senarai boleh disambungkan melalui pelbagai kaedah: 1) Pengendali penggunaan, yang sesuai untuk senarai kecil, tetapi tidak cekap untuk senarai besar; 2) Gunakan kaedah Extend, yang sesuai untuk senarai besar, dengan kecekapan memori yang tinggi, tetapi akan mengubah suai senarai asal; 3) menggunakan * pengendali, yang sesuai untuk menggabungkan pelbagai senarai, tanpa mengubah suai senarai asal; 4) Gunakan itertools.chain, yang sesuai untuk set data yang besar, dengan kecekapan memori yang tinggi.

Menggunakan kaedah Join () adalah cara yang paling berkesan untuk menyambungkan rentetan dari senarai di Python. 1) Gunakan kaedah Join () untuk menjadi cekap dan mudah dibaca. 2) Kitaran menggunakan pengendali tidak cekap untuk senarai besar. 3) Gabungan pemahaman senarai dan menyertai () sesuai untuk senario yang memerlukan penukaran. 4) Kaedah mengurangkan () sesuai untuk jenis pengurangan lain, tetapi tidak cekap untuk penyambungan rentetan. Kalimat lengkap berakhir.

PythonexecutionistheprocessoftransformingpythoncodeIntoExecutableInstructions.1) TheinterpreterreadsTheCode, convertingIntoByteCode, yang mana -mana

Ciri -ciri utama Python termasuk: 1. Sintaks adalah ringkas dan mudah difahami, sesuai untuk pemula; 2. Sistem jenis dinamik, meningkatkan kelajuan pembangunan; 3. Perpustakaan standard yang kaya, menyokong pelbagai tugas; 4. Komuniti dan ekosistem yang kuat, memberikan sokongan yang luas; 5. Tafsiran, sesuai untuk skrip dan prototaip cepat; 6. Sokongan multi-paradigma, sesuai untuk pelbagai gaya pengaturcaraan.

Python adalah bahasa yang ditafsirkan, tetapi ia juga termasuk proses penyusunan. 1) Kod python pertama kali disusun ke dalam bytecode. 2) Bytecode ditafsirkan dan dilaksanakan oleh mesin maya Python. 3) Mekanisme hibrid ini menjadikan python fleksibel dan cekap, tetapi tidak secepat bahasa yang disusun sepenuhnya.

UseAforLoopWheniteratingOvereForforpecificNumbimes; Useaphileloopwhencontinuinguntilaconditionismet.forloopsareidealforknownownsequences, sementara yang tidak digunakan.

Pythonloopscanleadtoerrorslikeinfiniteloops, pengubahsuaianListsduringiteration, off-by-oneerrors, sifar-indexingissues, andnestedloopinefficies.toavoidthese: 1) use'i


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.
