cari
Rumahpembangunan bahagian belakangTutorial PythonBagaimana Mencairkan Bingkai Data Pandas dan Bila Menggunakan Teknik Ini?

How to Melt a Pandas DataFrame and When to Use This Technique?

Melting Pandas DataFrames

What is Melt?

Mecairkan panda DataFrame melibatkan penstrukturan semula daripada format yang luas, di mana setiap lajur mewakili pembolehubah, kepada format yang panjang, di mana setiap baris mewakili pemerhatian dan setiap lajur mewakili nilai ciri pasangan.

Cara Mencairkan DataFrame

Untuk mencairkan DataFrame, gunakan fungsi pd.melt(), dengan menyatakan argumen berikut:

  • id_vars: Columns untuk disimpan sebagai pengecam unik (biasanya kunci utama atau indeks).
  • value_vars: Lajur untuk dicairkan (ditukar kepada baris). Jika tidak dinyatakan, semua lajur yang tiada dalam id_vars akan cair.
  • var_name: Nama lajur yang akan mengandungi nama lajur asal.
  • value_name: Nama lajur yang akan mengandungi lajur asal. nilai.

Sebagai contoh, untuk mencairkan yang berikut DataFrame:

import pandas as pd

df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'],
                   'Math': ['A+', 'B', 'A', 'F', 'D', 'C'],
                   'English': ['C', 'B', 'B', 'A+', 'F', 'A']})

kita boleh gunakan:

df_melted = pd.melt(df, id_vars=['Name'], value_vars=['Math', 'English'])

Ini akan mengeluarkan DataFrame yang cair:

   Name  variable  value
0   Bob    Math     A+
1   John    Math      B
2   Foo    Math      A
3   Bar    Math      F
4   Alex    Math      D
5   Tom    Math      C
6   Bob  English      C
7   John  English      B
8   Foo   English      B
9   Bar  English     A+
10  Alex  English      F
11  Tom   English      A

Bila Menggunakan Melt

Pencairan berguna apabila anda perlu:

  • Menubah data luas kepada format yang sesuai untuk plot atau visualisasi.
  • Sediakan data untuk model pembelajaran mesin yang memerlukan format data khusus.
  • Kumpulkan pemerhatian mengikut pengecam uniknya dan lakukan pengagregatan atau transformasi pada data cair.

Contoh Senario

Masalah 1: Tukar DataFrame di bawah kepada format cair, dengan lajur Nama, Umur, Subjek dan Gred.

df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'],
                   'Math': ['A+', 'B', 'A', 'F', 'D', 'C'],
                   'English': ['C', 'B', 'B', 'A+', 'F', 'A']})
df_melted = pd.melt(df, id_vars=['Name', 'Age'], var_name='Subject', value_name='Grade')

print(df_melted)

Output:

   Name  Age Subject Grade
0   Bob   13  English      C
1  John   16  English      B
2   Foo   16  English      B
3   Bar   15  English     A+
4  Alex   17  English      F
5   Tom   12  English      A
6   Bob   13     Math     A+
7  John   16     Math      B
8   Foo   16     Math      A
9   Bar   15     Math      F
10 Alex   17     Math      D
11  Tom   12     Math      C

Masalah 2: Tapis DataFrame yang cair daripada Masalah 1 untuk memasukkan hanya Matematik lajur.

df_melted_math = pd.melt(df, id_vars=['Name', 'Age'], value_vars=['Math'], var_name='Subject', value_name='Grade')

print(df_melted_math)

Output:

   Name  Age Subject Grade
0   Bob   13    Math     A+
1  John   16    Math      B
2   Foo   16    Math      A
3   Bar   15    Math      F
4  Alex   17    Math      D
5   Tom   12    Math      C

Masalah 3: Kumpulkan DataFrame yang cair mengikut Gred dan hitung nama dan subjek unik untuk setiap Gred.

df_melted_grouped = df_melted.groupby(['Grade']).agg({'Name': ', '.join, 'Subject': ', '.join}).reset_index()

print(df_melted_grouped)

Output:

  Grade             Name                Subjects
0     A       Foo, Tom           Math, English
1    A+         Bob, Bar           Math, English
2     B  John, John, Foo  Math, English, English
3     C         Bob, Tom           English, Math
4     D             Alex                    Math
5     F        Bar, Alex           Math, English

Masalah 4: Nyahcairkan DataFrame yang cair daripada Masalah 1 kembali kepada asalnya format.

df_unmelted = df_melted.pivot_table(index=['Name', 'Age'], columns='Subject', values='Grade', aggfunc='first').reset_index()

print(df_unmelted)

Output:

   Name  Age English Math
0   Alex   17       F    D
1   Bar   15      A+    F
2   Bob   13       C   A+
3   Foo   16       B    A
4  John   16       B    B
5   Tom   12       A    C

Masalah 5: Kumpulan DataFrame cair daripada Masalah 1 mengikut Nama dan asingkan subjek dan gred mengikut koma.

df_melted_by_name = df_melted.groupby('Name').agg({'Subject': ', '.join, 'Grade': ', '.join}).reset_index()

print(df_melted_by_name)

Output:

   Name        Subject Grades
0  Alex  Math, English   D, F
1   Bar  Math, English  F, A+
2   Bob  Math, English  A+, C
3   Foo  Math, English   A, B
4  John  Math, English   B, B
5   Tom  Math, English   C, A

Masalah 6: Cairkan keseluruhan DataFrame ke dalam satu lajur nilai, dengan lajur lain mengandungi nama lajur asal .

df_melted_full = df.melt(ignore_index=False)

print(df_melted_full)

Output:

   Name  Age  variable  value
0   Bob   13    Math     A+
1  John   16    Math      B
2   Foo   16    Math      A
3   Bar   15    Math      F
4  Alex   17    Math      D
5   Tom   12    Math      C
6   Bob   13  English      C
7  John   16  English      B
8   Foo   16  English      B
9   Bar   15  English     A+
10 Alex   17  English      F
11  Tom   12  English      A

Atas ialah kandungan terperinci Bagaimana Mencairkan Bingkai Data Pandas dan Bila Menggunakan Teknik Ini?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail TeksCara Menggunakan Python untuk Mencari Pengagihan Zipf Fail TeksMar 05, 2025 am 09:58 AM

Tutorial ini menunjukkan cara menggunakan Python untuk memproses konsep statistik undang -undang ZIPF dan menunjukkan kecekapan membaca dan menyusun fail teks besar Python semasa memproses undang -undang. Anda mungkin tertanya -tanya apa maksud pengedaran ZIPF istilah. Untuk memahami istilah ini, kita perlu menentukan undang -undang Zipf. Jangan risau, saya akan cuba memudahkan arahan. Undang -undang Zipf Undang -undang Zipf hanya bermaksud: Dalam korpus bahasa semulajadi yang besar, kata -kata yang paling kerap berlaku muncul kira -kira dua kali lebih kerap sebagai kata -kata kerap kedua, tiga kali sebagai kata -kata kerap ketiga, empat kali sebagai kata -kata kerap keempat, dan sebagainya. Mari kita lihat contoh. Jika anda melihat corpus coklat dalam bahasa Inggeris Amerika, anda akan melihat bahawa perkataan yang paling kerap adalah "th

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?Mar 10, 2025 pm 06:54 PM

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Penapisan gambar di pythonPenapisan gambar di pythonMar 03, 2025 am 09:44 AM

Berurusan dengan imej yang bising adalah masalah biasa, terutamanya dengan telefon bimbit atau foto kamera resolusi rendah. Tutorial ini meneroka teknik penapisan imej di Python menggunakan OpenCV untuk menangani isu ini. Penapisan Imej: Alat yang berkuasa Penapis Imej

Pengenalan kepada pengaturcaraan selari dan serentak di PythonPengenalan kepada pengaturcaraan selari dan serentak di PythonMar 03, 2025 am 10:32 AM

Python, kegemaran sains dan pemprosesan data, menawarkan ekosistem yang kaya untuk pengkomputeran berprestasi tinggi. Walau bagaimanapun, pengaturcaraan selari dalam Python memberikan cabaran yang unik. Tutorial ini meneroka cabaran -cabaran ini, memberi tumpuan kepada Interprete Global

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?Mar 10, 2025 pm 06:52 PM

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Cara Melaksanakan Struktur Data Anda Sendiri di PythonCara Melaksanakan Struktur Data Anda Sendiri di PythonMar 03, 2025 am 09:28 AM

Tutorial ini menunjukkan mewujudkan struktur data saluran paip tersuai di Python 3, memanfaatkan kelas dan pengendali yang berlebihan untuk fungsi yang dipertingkatkan. Fleksibiliti saluran paip terletak pada keupayaannya untuk menggunakan siri fungsi ke set data, GE

Serialization dan deserialisasi objek python: Bahagian 1Serialization dan deserialisasi objek python: Bahagian 1Mar 08, 2025 am 09:39 AM

Serialization dan deserialization objek Python adalah aspek utama dari mana-mana program bukan remeh. Jika anda menyimpan sesuatu ke fail python, anda melakukan siri objek dan deserialization jika anda membaca fail konfigurasi, atau jika anda menjawab permintaan HTTP. Dalam erti kata, siri dan deserialization adalah perkara yang paling membosankan di dunia. Siapa yang peduli dengan semua format dan protokol ini? Anda mahu berterusan atau mengalirkan beberapa objek python dan mengambilnya sepenuhnya pada masa yang akan datang. Ini adalah cara yang baik untuk melihat dunia pada tahap konseptual. Walau bagaimanapun, pada tahap praktikal, skim siri, format atau protokol yang anda pilih boleh menentukan kelajuan, keselamatan, kebebasan status penyelenggaraan, dan aspek lain dari program

Modul Matematik dalam Python: StatistikModul Matematik dalam Python: StatistikMar 09, 2025 am 11:40 AM

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa