Kami telah mengusahakan kursus data AI baharu untuk menunjukkan cara anda boleh membina bot sembang AI dengan mengalihkan data e-dagang daripada Stripe ke PGVector yang berjalan di Supabase, melalui penyambung PGVector Airbyte untuk mencipta pembenaman OpenAI, menggunakan perpustakaan klien OpenAI untuk menambah sokongan bahasa semula jadi ke dalam apl. Ini ialah corak aplikasi "tindanan data pintar" yang biasa digunakan oleh ramai pelanggan kami. Sumber dan destinasi mungkin berubah, tetapi corak (sumber data > alihkan data dan buat pembenaman > stor data berdaya vektor > apl web dengan OpenAI) kekal sama.
Memandangkan kami sedang mengusahakan kursus yang bertujuan untuk digunakan oleh orang ramai, kami ingin membuat persediaan semudah mungkin. Sebahagian besar daripada ini ialah mencipta data ujian yang mencukupi dalam Stripe supaya terdapat set data yang munasabah untuk chatbot berinteraksi. Jika anda pernah menggunakan Stripe sebelum ini, anda tahu mereka mempunyai Kotak Pasir yang hebat untuk anda mencubanya. Satu-satunya masalah ialah ia tidak mempunyai data sampel yang dipramuat.
Terdapat beberapa set data sampel yang boleh anda muatkan melalui arahan lekapan CLI. Tetapi, untuk kegunaan kami, ini tidak menepati keperluan. Kami mahukan set data yang lebih besar, dan memandangkan bahan ini akan digunakan dalam talian dan dalam bengkel, meminta pelajar memasang sesuatu, seperti CLI, pada mesin tempatan mereka membuka anda kepada pelbagai urusan yang rumit. Anda tidak pernah tahu versi OS yang dijalankan oleh pengguna, sama ada mereka mempunyai kebenaran yang betul untuk memasang sesuatu, dan banyak lagi. Saya telah terlalu banyak kali terbakar untuk pergi ke jalan itu.
Syukurlah, Stripe juga mempunyai API yang hebat, dan pelanggan Python yang hebat yang bermakna kami boleh mencipta buku nota kerjasama dengan cepat untuk pelajar menjalankan dan memasukkan data yang kami mahukan.
Selepas memasang pustaka stripe melalui !pip install stripe dan menghantar kunci ujian menggunakan rahsia Google Collab, kami terpaksa menyediakan beberapa nama rawak untuk pelanggan dan produk. Matlamatnya adalah untuk memasukkan pelanggan koleksi rawak, produk dengan harga yang berbeza, dan pembelian. Dengan cara ini apabila kami bertanya soalan chatbot seperti "siapa yang membuat pembelian paling murah? Berapa banyak yang mereka bayar dan apakah yang mereka beli?" terdapat data yang mencukupi.
import stripe import random from google.colab import userdata stripe.api_key = userdata.get('STRIPE_TEST_KEY') # Sample data for generating random names first_names = ["Alice", "Bob", "Charlie", "Diana", "Eve", "Frank", "Grace", "Hank", "Ivy", "Jack", "Quinton", "Akriti", "Justin", "Marcos"] last_names = ["Smith", "Johnson", "Williams", "Jones", "Brown", "Davis", "Miller", "Wilson", "Moore", "Taylor", "Wall", "Chau", "Keswani", "Marx"] # Sample clothing product names clothing_names = [ "T-Shirt", "Jeans", "Jacket", "Sweater", "Hoodie", "Shorts", "Dress", "Blouse", "Skirt", "Pants", "Shoes", "Sandals", "Sneakers", "Socks", "Hat", "Scarf", "Gloves", "Coat", "Belt", "Tie", "Tank Top", "Cardigan", "Overalls", "Tracksuit", "Polo Shirt", "Cargo Pants", "Capris", "Dungarees", "Boots", "Cufflinks", "Raincoat", "Peacoat", "Blazer", "Slippers", "Underwear", "Leggings", "Windbreaker", "Tracksuit Bottoms", "Beanie", "Bikini" ] # List of random colors colors = [ "Red", "Blue", "Green", "Yellow", "Black", "White", "Gray", "Pink", "Purple", "Orange", "Brown", "Teal", "Navy", "Maroon", "Gold", "Silver", "Beige", "Lavender", "Turquoise", "Coral" ]
Seterusnya, tiba masanya untuk menambah fungsi bagi setiap jenis data dalam Stripe yang kami perlukan.
# Function to create sample customers with random names def create_customers(count=5): customers = [] for _ in range(count): first_name = random.choice(first_names) last_name = random.choice(last_names) name = f"{first_name} {last_name}" email = f"{first_name.lower()}.{last_name.lower()}@example.com" customer = stripe.Customer.create( name=name, email=email, description="Sample customer for testing" ) customers.append(customer) print(f"Created Customer: {customer['name']} (ID: {customer['id']})") return customers # Function to create sample products with random clothing names and colors def create_products(count=3): products = [] for _ in range(count): color = random.choice(colors) product_name = random.choice(clothing_names) full_name = f"{color} {product_name}" product = stripe.Product.create( name=full_name, description=f"This is a {color.lower()} {product_name.lower()}" ) products.append(product) print(f"Created Product: {product['name']} (ID: {product['id']})") return products # Function to create prices for the products with random unit_amount def create_prices(products, min_price=500, max_price=5000): prices = [] for product in products: unit_amount = random.randint(min_price, max_price) # Random amount in cents price = stripe.Price.create( unit_amount=unit_amount, currency="usd", product=product['id'] ) prices.append(price) print(f"Created Price: ${unit_amount / 100:.2f} for Product {product['name']} (ID: {price['id']})") return prices # Function to create random purchases for each customer def create_purchases(customers, prices, max_purchases_per_customer=5): purchases = [] for customer in customers: num_purchases = random.randint(1, max_purchases_per_customer) # Random number of purchases per customer for _ in range(num_purchases): price = random.choice(prices) # Randomly select a product's price purchase = stripe.PaymentIntent.create( amount=price['unit_amount'], # Amount in cents currency=price['currency'], customer=customer['id'], payment_method_types=["card"], # Simulate card payment description=f"Purchase of {price['product']} by {customer['name']}" ) purchases.append(purchase) print(f"Created Purchase for Customer {customer['name']} (Amount: ${price['unit_amount'] / 100:.2f})") return purchases
Yang tinggal hanyalah menjalankan skrip dan menentukan jumlah data yang kami perlukan.
# Main function to create sample data def main(): print("Creating sample customers with random names...") customers = create_customers(count=20) print("\nCreating sample products with random clothing names and colors...") products = create_products(count=30) print("\nCreating prices for products with random amounts...") prices = create_prices(products, min_price=500, max_price=5000) print("\nCreating random purchases for each customer...") purchases = create_purchases(customers, prices, max_purchases_per_customer=10) print("\nSample data creation complete!") print(f"Created {len(customers)} customers, {len(products)} products, and {len(purchases)} purchases.") if __name__ == "__main__": main()
Dengan data yang dimuatkan ke dalam Kotak Pasir Stripe kami, menyambungkannya ke Airbyte hanya mengambil masa beberapa minit dengan menggunakan Pembina Penyambung untuk memetakan titik akhir API kepada strim untuk setiap jenis data dan menyediakan kerja penyegerakan.
Masalah selesai! Skrip Collab Python kami sangat mudah untuk pelajar memasukkan data ujian ke dalam Stripe. Semoga ia berguna untuk orang lain yang melakukan ujian serupa.
Atas ialah kandungan terperinci Mencipta Data Ujian Stripe dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Sebab -sebab mengapa skrip Python tidak dapat dijalankan pada sistem Unix termasuk: 1) kebenaran yang tidak mencukupi, menggunakan chmod xyour_script.py untuk memberikan kebenaran pelaksanaan; 2) garis shebang yang tidak betul atau hilang, anda harus menggunakan #!/Usr/bin/envpython; 3) tetapan pembolehubah persekitaran yang salah, anda boleh mencetak debugging os.environ; 4) Menggunakan versi Python yang salah, anda boleh menentukan versi pada garis Shebang atau baris arahan; 5) masalah pergantungan, menggunakan persekitaran maya untuk mengasingkan ketergantungan; 6) Kesalahan sintaks, gunakan python-mpy_compileyour_script.py untuk mengesan.

Menggunakan tatasusunan python lebih sesuai untuk memproses sejumlah besar data berangka daripada senarai. 1) Array menjimatkan lebih banyak memori, 2) array lebih cepat untuk beroperasi dengan nilai berangka, 3) Arrays Force Jenis Konsistensi, 4) Array bersesuaian dengan array C, tetapi tidak fleksibel dan mudah seperti senarai.

Listsare yang lebih baik lebih baik foreflexibilityandmixdatatatypes, whilearraysares sand sumerical sand sand sand lared datasets.1) Senarai yang tidak dapat diselaraskan xibility, mixeddatatypes, dan elementChanges.2) Operasi sensori UsArray, LargedataSet, dan WhenmememoryefficyFiciency.2

NumpyManagesMemoryforlargeArraySefficientlyusingViews, salinan, danMemory-mappedfiles.1) viewSallowSlicingWithoutCopying, secara langsungModifyingTheoriginalArray.2) copiescanbecreatedwithTheCopy () methorpreserveservervesvesverdata.3) MemoriSberServervesvesves

Listsinpythondonotrequireimportingamodule, whilearraysfromthearraymoduledoneedanimport.1) listsarebuilt-in, serba boleh, dancanholdmixeddatatypes.2) arraysaremorememory-efficientfornumericydatabuTabeSflexible, yang tidak dapat dilupakan.

Pythonlistscanstoreanydatatype, arraymoduleArraysstoreonetype, andnumpyarraysarefornumumericalcomputations.1) listsareversatileButlessMememory-efficient.2) arraymoduleArduleArrayRaysarememory-efficientforhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogen

KetikayyoUttemptToStoreAveFheWrongatatypeinapythonArray, anda akan menjadicounteratypeerror

Pythonlistsarepartofthestandardlibrary, sementara


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma
