


Bagaimana untuk Mencipta Lajur Baharu dengan Nilai Berasaskan Syarat dalam Panda?
Membuat Lajur Baharu dengan Nilai Berasaskan Keadaan
Soalan ini meneroka cara menambah lajur baharu, warna, pada bingkai data yang diberikan. Syaratnya ialah warna harus ditetapkan kepada 'hijau' jika nilai yang sepadan dalam lajur Set ialah 'Z' dan 'merah' sebaliknya.
Penyelesaian dengan Numpy Where:
Untuk senario dengan dua pilihan sahaja, kaedah np.where boleh digunakan. Berikut ialah kodnya:
df['color'] = np.where(df['Set'] == 'Z', 'green', 'red')
Pendekatan ini secara berkesan memperuntukkan 'hijau' kepada baris dengan Set ialah 'Z' dan 'merah' sebaliknya.
Penyelesaian dengan Numpy Select:
Dalam kes di mana terdapat lebih daripada dua syarat, np.select boleh digunakan. Katakan warna harus memenuhi kriteria berikut:
- 'kuning' apabila Set ialah 'Z' dan Jenis ialah 'A'
- 'biru' apabila Set ialah 'Z' dan Taip ialah 'B'
- 'ungu' apabila Jenis ialah 'B'
- 'hitam' jika tidak
Dalam senario ini, kodnya ialah:
conditions = [ (df['Set'] == 'Z') & (df['Type'] == 'A'), (df['Set'] == 'Z') & (df['Type'] == 'B'), (df['Type'] == 'B')] choices = ['yellow', 'blue', 'purple'] df['color'] = np.select(conditions, choices, default='black')
Penyelesaian ini membenarkan penetapan nilai berasaskan keadaan yang fleksibel dan berbutir untuk lajur baharu.
Atas ialah kandungan terperinci Bagaimana untuk Mencipta Lajur Baharu dengan Nilai Berasaskan Syarat dalam Panda?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

ToAppendElementStoapyThonList, useTheAppend () methodforsingleelements, extend () formultipleelements, andInsert () forspecificposition.1) useAppend () foraddingOneElementAttheend.2)

TOCREATEAPYTHONLIST, USESQUAREBRACKETS [] danSeparatateItemSwithCommas.1) listsaredynamicandCanHoldMixedDatypes.2) UseAppend (), mengalih keluar (), danSlicingFormApulation.3)

Dalam bidang kewangan, penyelidikan saintifik, penjagaan perubatan dan AI, adalah penting untuk menyimpan dan memproses data berangka dengan cekap. 1) Dalam Kewangan, menggunakan memori yang dipetakan fail dan perpustakaan Numpy dapat meningkatkan kelajuan pemprosesan data dengan ketara. 2) Dalam bidang penyelidikan saintifik, fail HDF5 dioptimumkan untuk penyimpanan data dan pengambilan semula. 3) Dalam penjagaan perubatan, teknologi pengoptimuman pangkalan data seperti pengindeksan dan pembahagian meningkatkan prestasi pertanyaan data. 4) Dalam AI, data sharding dan diedarkan latihan mempercepatkan latihan model. Prestasi dan skalabiliti sistem dapat ditingkatkan dengan ketara dengan memilih alat dan teknologi yang tepat dan menimbang perdagangan antara kelajuan penyimpanan dan pemprosesan.

Pythonarraysarecreatedusingthearraymodule, notbuilt-inlikelists.1) importTheArrayModule.2) specifythetypecode, cth., 'I'forintegers.3) Initializewithvalues.arraysofferbettermemoryficiencyficorhomogeneousdatabutflex.

Sebagai tambahan kepada garis shebang, terdapat banyak cara untuk menentukan penterjemah python: 1. Gunakan perintah python terus dari baris arahan; 2. Gunakan fail batch atau skrip shell; 3. Gunakan alat binaan seperti membuat atau cmake; 4. Gunakan pelari tugas seperti Invoke. Setiap kaedah mempunyai kelebihan dan kekurangannya, dan penting untuk memilih kaedah yang sesuai dengan keperluan projek.

Forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-efisien danfasterfornumumerical.2) mengelakkan yang tidak dapat dipertahankan.3)

Inpython, listsusedynamicMemoryAllocationwithover-peruntukan, pemecahan yang tidak dapat dilaksanakan.1) listsallocatemoremoremorythanneedinitial, resizingwhennessary.2) numpyarraysallocateExactMemoreForelements, menawarkanpredictableSabeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeat.

Inpython, YouCansspectHedatypeyFeleMeremodelerernspant.1) Usenpynernrump.1) usenpynerp.dloatp.ploatm64, formor preciscontrolatatypes.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.
