


Mengapa Bacaan Logik Tinggi untuk Fungsi Agregat Bertingkap dengan Gelendong Subungkapan Biasa?
Apabila menggunakan kili subungkapan biasa dalam pelan pelaksanaan, terutamanya untuk fungsi agregat bertingkap, bacaan logik yang sangat tinggi kerana meja besar telah diperhatikan. Tingkah laku ini menimbulkan kebimbangan tentang kecekapan kili tersebut.
Punca Punca: Pengiraan Unik Bacaan Logik untuk Meja Kerja
Tidak seperti jadual kili tradisional, bacaan logik untuk jadual kerja, yang merupakan struktur dalaman yang digunakan untuk pengagregatan , dikira secara berbeza. Daripada mengukur halaman cincang, bacaan logik jadual kerja ditambah untuk setiap bacaan baris. Kaedah pengiraan unik ini menghasilkan kiraan yang kelihatan tinggi, walaupun jadual kerja sangat cekap.
Memahami Formula
Dalam kes khusus anda, formula yang anda temui, "Bacaan logik jadual kerja = 1 NumberOfRows 2 NumberOfGroups 4," berlaku kerana kelakuan khusus ini kili:
- 1 : Overhed awal dan baris tiruan akhir
- NumberOfRows * 2: Bacaan penuh kedua-dua kili sekunder
- NumberOfGroups * 4: Kili utama mengeluarkan baris (NumberOfGroups 1)
Cerapan Tambahan
- Kili utama mengeluarkan baris tambahan untuk menandakan berakhirnya kumpulan terakhir.
- Formula menyumbang baris tambahan ini dalam komponen akhir, menjadikannya NumberOfGroups 1.
Petua Penyelesaian Masalah
Walaupun mengesan bacaan halaman bukan pilihan untuk jadual kerja, memahami mekanisme pengiraan unik ini boleh membantu menjelaskan bacaan logik tinggi yang diperhatikan.
Rujukan
Untuk penjelasan lanjut, rujuk kepada:
- Buku Penalaan dan Pengoptimuman Pertanyaan, Bab 3
- Siaran blog Paul White pada kili subungkapan biasa
Atas ialah kandungan terperinci Mengapa Pertanyaan Agregat Bertingkap Saya Menunjukkan Bacaan Logik Tinggi Tanpa Jangkaan Apabila Menggunakan Gelendong Subungkapan Biasa?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Cardinality Indeks MySQL mempunyai kesan yang signifikan terhadap prestasi pertanyaan: 1. Indeks kardinaliti yang tinggi dapat lebih berkesan menyempitkan julat data dan meningkatkan kecekapan pertanyaan; 2. Indeks kardinaliti yang rendah boleh membawa kepada pengimbasan jadual penuh dan mengurangkan prestasi pertanyaan; 3. Dalam indeks bersama, urutan kardinaliti yang tinggi harus diletakkan di depan untuk mengoptimumkan pertanyaan.

Laluan pembelajaran MySQL termasuk pengetahuan asas, konsep teras, contoh penggunaan, dan teknik pengoptimuman. 1) Memahami konsep asas seperti jadual, baris, lajur, dan pertanyaan SQL. 2) Ketahui definisi, prinsip kerja dan kelebihan MySQL. 3) menguasai operasi CRUD asas dan penggunaan lanjutan, seperti indeks dan prosedur yang disimpan. 4) Biasa dengan debugging kesilapan biasa dan cadangan pengoptimuman prestasi, seperti penggunaan rasional indeks dan pertanyaan pengoptimuman. Melalui langkah -langkah ini, anda akan memahami sepenuhnya penggunaan dan pengoptimuman MySQL.

Aplikasi dunia nyata MySQL termasuk reka bentuk pangkalan data asas dan pengoptimuman pertanyaan kompleks. 1) Penggunaan Asas: Digunakan untuk menyimpan dan mengurus data pengguna, seperti memasukkan, menanyakan, mengemas kini dan memadam maklumat pengguna. 2) Penggunaan lanjutan: Mengendalikan logik perniagaan yang kompleks, seperti perintah dan pengurusan inventori platform e-dagang. 3) Pengoptimuman Prestasi: Meningkatkan prestasi dengan menggunakan indeks, jadual partisi dan cache pertanyaan.

Perintah SQL di MySQL boleh dibahagikan kepada kategori seperti DDL, DML, DQL, dan DCL, dan digunakan untuk membuat, mengubah suai, memadam pangkalan data dan jadual, memasukkan, mengemas kini, memadam data, dan melakukan operasi pertanyaan yang kompleks. 1. Penggunaan asas termasuk jadual penciptaan createtable, memasukkan data memasukkan, dan pilih data pertanyaan. 2. Penggunaan lanjutan melibatkan gabungan untuk Jadual Bergabung, Subqueries dan Groupby untuk Agregasi Data. 3. Kesilapan umum seperti kesilapan sintaks, jenis data yang tidak sepadan dan masalah kebenaran boleh disahpepijat melalui pemeriksaan sintaks, penukaran jenis data dan pengurusan kebenaran. 4. Cadangan Pengoptimuman Prestasi termasuk menggunakan indeks, mengelakkan pengimbasan jadual penuh, mengoptimumkan operasi gabungan dan menggunakan transaksi untuk memastikan konsistensi data.

InnoDB mencapai atomik melalui undolog, konsistensi dan pengasingan melalui mekanisme penguncian dan MVCC, dan kegigihan melalui redolog. 1) Atomicity: Gunakan Undolog untuk merekodkan data asal untuk memastikan urus niaga dapat dilancarkan kembali. 2) Konsistensi: Memastikan konsistensi data melalui penguncian peringkat baris dan MVCC. 3) Pengasingan: Menyokong pelbagai tahap pengasingan, dan RepeatableRead digunakan secara lalai. 4) Kegigihan: Gunakan redolog untuk merekodkan pengubahsuaian untuk memastikan data disimpan untuk masa yang lama.

Kedudukan MySQL dalam pangkalan data dan pengaturcaraan sangat penting. Ia adalah sistem pengurusan pangkalan data sumber terbuka yang digunakan secara meluas dalam pelbagai senario aplikasi. 1) MySQL menyediakan fungsi penyimpanan data, organisasi dan pengambilan data yang cekap, sistem sokongan web, mudah alih dan perusahaan. 2) Ia menggunakan seni bina pelanggan-pelayan, menyokong pelbagai enjin penyimpanan dan pengoptimuman indeks. 3) Penggunaan asas termasuk membuat jadual dan memasukkan data, dan penggunaan lanjutan melibatkan pelbagai meja dan pertanyaan kompleks. 4) Soalan -soalan yang sering ditanya seperti kesilapan sintaks SQL dan isu -isu prestasi boleh disahpepijat melalui arahan jelas dan log pertanyaan perlahan. 5) Kaedah pengoptimuman prestasi termasuk penggunaan indeks rasional, pertanyaan yang dioptimumkan dan penggunaan cache. Amalan terbaik termasuk menggunakan urus niaga dan preparedStatemen

MySQL sesuai untuk perusahaan kecil dan besar. 1) Perniagaan kecil boleh menggunakan MySQL untuk pengurusan data asas, seperti menyimpan maklumat pelanggan. 2) Perusahaan besar boleh menggunakan MySQL untuk memproses data besar dan logik perniagaan yang kompleks untuk mengoptimumkan prestasi pertanyaan dan pemprosesan transaksi.

InnoDB secara berkesan menghalang pembacaan hantu melalui mekanisme utama. 1) Kekunci seterusnya menggabungkan kunci baris dan kunci jurang untuk mengunci rekod dan jurang mereka untuk mengelakkan rekod baru daripada dimasukkan. 2) Dalam aplikasi praktikal, dengan mengoptimumkan pertanyaan dan menyesuaikan tahap pengasingan, persaingan kunci dapat dikurangkan dan prestasi konkurensi dapat ditingkatkan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma