


Bagaimana untuk menyahsarang Lajur DataFrame Pandas menjadi Berbilang Baris?
Cara Menyahsarang Lajur menjadi Berbilang Baris dalam Bingkai Data Pandas
Masalah:
Anda mempunyai DataFrame di mana satu lajur mengandungi senarai nilai dan anda ingin memisahkan setiap elemen senarai ke dalamnya baris sendiri.
Penyelesaian:
Terdapat beberapa kaedah untuk menyahsarang (atau meletupkan) lajur dalam Pandas DataFrame:
Kaedah 1: Menggunakan letupan (Panda >= 0.25)
Jika anda mempunyai satu lajur untuk dinyahsarang, fungsi letupan ialah penyelesaian paling mudah:
df.explode('B')
Kaedah 2: Menggunakan apply dan pd.Series
Kaedah ini mudah tetapi tidak disyorkan untuk prestasi sebab:
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
Kaedah 3: Menggunakan pengulangan dan Pembina DataFrame
Buat DataFrame baharu dengan nilai berulang dalam lajur tidak bersarang:
df=pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})
Kaedah 4: Menggunakan indeks semula atau loc
Buat DataFrame baharu dengan nilai yang tidak bersarang dan gunakan indeks semula atau loc untuk menyelaraskannya dengan asal:
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
Kaedah 5: Menggunakan koleksi.ChainMap ( apabila senarai mengandungi unik nilai)
from collections import ChainMap d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A']))) pd.DataFrame(list(d.items()),columns=df.columns[::-1])
Kaedah 6: Menggunakan Numpy untuk Prestasi Tinggi
Kaedah ini lebih cekap daripada yang sebelumnya:
newvalues=np.dstack((np.repeat(df.A.values,list(map(len,df.B.values))),np.concatenate(df.B.values))) pd.DataFrame(data=newvalues[0],columns=df.columns)
Kaedah 7: Menggunakan itertools.cycle dan itertools.chain
Penyelesaian Python tulen untuk keseronokan:
from itertools import cycle,chain l=df.values.tolist() l1=[list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l] pd.DataFrame(list(chain.from_iterable(l1)),columns=df.columns)
Mengerti kepada Berbilang Lajur:
Fungsi berikut membolehkan anda untuk unnest berbilang lajur dalam a DataFrame:
def unnesting(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how='left')
Column-wise Unnesting:
Jika anda perlu membuka sarang lajur secara mendatar, gunakan kaedah add_prefix bagi pembina DataFrame:
df.join(pd.DataFrame(df.B.tolist(),index=df.index).add_prefix('B_'))
Atas ialah kandungan terperinci Bagaimana untuk menyahsarang Lajur DataFrame Pandas menjadi Berbilang Baris?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Pythonisbothompiledandintinterpreted.whenyourunapythonscript, itisfirstompiledintobytecode, yang manaThenexecutedbythonvirtualmachine (pvm).

Python bukan pelaksanaan line-by-line, tetapi dioptimumkan dan pelaksanaan bersyarat berdasarkan mekanisme penterjemah. Jurubahasa menukarkan kod ke bytecode, dilaksanakan oleh PVM, dan mungkin pretompile ekspresi malar atau mengoptimumkan gelung. Memahami mekanisme ini membantu mengoptimumkan kod dan meningkatkan kecekapan.

Terdapat banyak kaedah untuk menyambungkan dua senarai dalam Python: 1. Pengendali menggunakan, yang mudah tetapi tidak cekap dalam senarai besar; 2. Gunakan kaedah Extend, yang cekap tetapi akan mengubah suai senarai asal; 3. Gunakan operator =, yang kedua -duanya cekap dan boleh dibaca; 4. Gunakan fungsi itertools.Chain, yang efisien memori tetapi memerlukan import tambahan; 5. Penggunaan senarai parsing, yang elegan tetapi mungkin terlalu kompleks. Kaedah pemilihan harus berdasarkan konteks dan keperluan kod.

Terdapat banyak cara untuk menggabungkan senarai Python: 1. Menggunakan pengendali, yang mudah tetapi tidak memori yang cekap untuk senarai besar; 2. Gunakan kaedah Extend, yang cekap tetapi akan mengubah suai senarai asal; 3. Gunakan itertools.chain, yang sesuai untuk set data yang besar; 4. Penggunaan * pengendali, bergabung dengan senarai kecil hingga sederhana dalam satu baris kod; 5. Gunakan numpy.concatenate, yang sesuai untuk set data dan senario yang besar dengan keperluan prestasi tinggi; 6. Gunakan kaedah tambahan, yang sesuai untuk senarai kecil tetapi tidak cekap. Apabila memilih kaedah, anda perlu mempertimbangkan saiz senarai dan senario aplikasi.

Compiledlanguagesofferspeedandsecurity, whilintpretedLanguagesprovideoeSeAfuseAndPortability.1) compiledLanguageslikec arefasterandsecureButhavelongerDevelopmentCyclesandplatformdependency.2) interpretedLanguagePyePyhonareeAseAreeAseaneAseaneSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSeaneaneAseaneaneAseaneaneAdoSioSiAdaSiAdoeSeaneAdoeSeaneAdoeSeanDoReAseanDOREPYHOREADOREB

Di Python, A untuk gelung digunakan untuk melintasi objek yang boleh dimakan, dan gelung sementara digunakan untuk melakukan operasi berulang kali apabila keadaan berpuas hati. 1) Untuk contoh gelung: melintasi senarai dan mencetak unsur -unsur. 2) Walaupun contoh gelung: Tebak permainan nombor sehingga anda rasa betul. Menguasai prinsip kitaran dan teknik pengoptimuman dapat meningkatkan kecekapan dan kebolehpercayaan kod.

Untuk menggabungkan senarai ke dalam rentetan, menggunakan kaedah Join () dalam Python adalah pilihan terbaik. 1) Gunakan kaedah Join () untuk menggabungkan elemen senarai ke dalam rentetan, seperti '' .join (my_list). 2) Untuk senarai yang mengandungi nombor, tukar peta (str, nombor) ke dalam rentetan sebelum menggabungkan. 3) Anda boleh menggunakan ekspresi penjana untuk pemformatan kompleks, seperti ','. Sertai (f '({Fruit})' forfruitinFruits). 4) Apabila memproses jenis data bercampur, gunakan peta (str, mixed_list) untuk memastikan semua elemen dapat ditukar menjadi rentetan. 5) Untuk senarai besar, gunakan '' .join (large_li

Pythonusesahybridapproach, combiningcompilationtobytecodeandinterpretation.1) codeiscompiledtopplatform-independentbytecode.2) byteCodeisinterpretedbythepythonvirtualmachine, enhancingficiencyAndortability.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Dreamweaver Mac版
Alat pembangunan web visual

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa
