cari
Rumahpembangunan bahagian belakangTutorial PythonMengapa Menggabungkan Banyak Bingkai Data Panda Secara Eksponen Lambat, dan Bagaimana Saya Boleh Mengelakkannya?

Why is Concatenating Many Pandas DataFrames Exponentially Slow, and How Can I Avoid It?

Penggabungan DataFrames Secara Eksponen Lambat

Apabila bekerja dengan set data yang besar, adalah perkara biasa untuk membahagikan data kepada bahagian yang lebih kecil untuk pemprosesan yang cekap. Walau bagaimanapun, penyatuan kembali ketulan ini boleh menjadi lebih perlahan apabila bilangan ketulan bertambah.

Punca Kelembapan

Kelembaban itu dikaitkan dengan cara pd.concat() dilaksanakan. Apabila dipanggil dalam gelung, ia mencipta DataFrame baharu untuk setiap gabungan, menghasilkan penyalinan data yang banyak. Kos penyalinan ini meningkat secara kuadratik dengan bilangan lelaran, yang membawa kepada peningkatan eksponen yang diperhatikan dalam masa pemprosesan.

Mengelakkan Kelembapan

Untuk mengelakkan kesesakan prestasi ini, adalah penting untuk mengelak daripada memanggil pd.concat() di dalam gelung untuk. Sebaliknya, simpan ketulan dalam senarai dan gabungkan kesemuanya sekali gus selepas diproses:

super_x = []
for i, df_chunk in enumerate(df_list):
    [x, y] = preprocess_data(df_chunk)
    super_x.append(x)
super_x = pd.concat(super_x, axis=0)

Menggunakan pendekatan ini, penyalinan hanya berlaku sekali, dengan ketara mengurangkan masa pemprosesan keseluruhan.

Atas ialah kandungan terperinci Mengapa Menggabungkan Banyak Bingkai Data Panda Secara Eksponen Lambat, dan Bagaimana Saya Boleh Mengelakkannya?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Apakah sebab -sebab umum mengapa skrip python mungkin tidak dilaksanakan pada UNIX?Apakah sebab -sebab umum mengapa skrip python mungkin tidak dilaksanakan pada UNIX?Apr 28, 2025 am 12:18 AM

Sebab -sebab mengapa skrip Python tidak dapat dijalankan pada sistem Unix termasuk: 1) kebenaran yang tidak mencukupi, menggunakan chmod xyour_script.py untuk memberikan kebenaran pelaksanaan; 2) garis shebang yang tidak betul atau hilang, anda harus menggunakan #!/Usr/bin/envpython; 3) tetapan pembolehubah persekitaran yang salah, anda boleh mencetak debugging os.environ; 4) Menggunakan versi Python yang salah, anda boleh menentukan versi pada garis Shebang atau baris arahan; 5) masalah pergantungan, menggunakan persekitaran maya untuk mengasingkan ketergantungan; 6) Kesalahan sintaks, gunakan python-mpy_compileyour_script.py untuk mengesan.

Berikan contoh senario di mana menggunakan array python akan lebih sesuai daripada menggunakan senarai.Berikan contoh senario di mana menggunakan array python akan lebih sesuai daripada menggunakan senarai.Apr 28, 2025 am 12:15 AM

Menggunakan tatasusunan python lebih sesuai untuk memproses sejumlah besar data berangka daripada senarai. 1) Array menjimatkan lebih banyak memori, 2) array lebih cepat untuk beroperasi dengan nilai berangka, 3) Arrays Force Jenis Konsistensi, 4) Array bersesuaian dengan array C, tetapi tidak fleksibel dan mudah seperti senarai.

Apakah implikasi prestasi menggunakan senarai berbanding tatasusunan dalam python?Apakah implikasi prestasi menggunakan senarai berbanding tatasusunan dalam python?Apr 28, 2025 am 12:10 AM

Listsare yang lebih baik lebih baik foreflexibilityandmixdatatatypes, whilearraysares sand sumerical sand sand sand lared datasets.1) Senarai yang tidak dapat diselaraskan xibility, mixeddatatypes, dan elementChanges.2) Operasi sensori UsArray, LargedataSet, dan WhenmememoryefficyFiciency.2

Bagaimanakah Numpy mengendalikan pengurusan memori untuk tatasusunan besar?Bagaimanakah Numpy mengendalikan pengurusan memori untuk tatasusunan besar?Apr 28, 2025 am 12:07 AM

NumpyManagesMemoryforlargeArraySefficientlyusingViews, salinan, danMemory-mappedfiles.1) viewSallowSlicingWithoutCopying, secara langsungModifyingTheoriginalArray.2) copiescanbecreatedwithTheCopy () methorpreserveservervesvesverdata.3) MemoriSberServervesvesves

Yang memerlukan mengimport modul: senarai atau tatasusunan?Yang memerlukan mengimport modul: senarai atau tatasusunan?Apr 28, 2025 am 12:06 AM

Listsinpythondonotrequireimportingamodule, whilearraysfromthearraymoduledoneedanimport.1) listsarebuilt-in, serba boleh, dancanholdmixeddatatypes.2) arraysaremorememory-efficientfornumericydatabuTabeSflexible, yang tidak dapat dilupakan.

Apakah jenis data yang boleh disimpan dalam array python?Apakah jenis data yang boleh disimpan dalam array python?Apr 27, 2025 am 12:11 AM

Pythonlistscanstoreanydatatype, arraymoduleArraysstoreonetype, andnumpyarraysarefornumumericalcomputations.1) listsareversatileButlessMememory-efficient.2) arraymoduleArduleArrayRaysarememory-efficientforhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogen

Apa yang berlaku jika anda cuba menyimpan nilai jenis data yang salah dalam array python?Apa yang berlaku jika anda cuba menyimpan nilai jenis data yang salah dalam array python?Apr 27, 2025 am 12:10 AM

KetikayyoUttemptToStoreAveFheWrongatatypeinapythonArray, anda akan menjadicounteratypeerror

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array?Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array?Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma