Rumah >pembangunan bahagian belakang >Tutorial Python >[CVHSV lwn RGB: Memahami dan Memanfaatkan HSV untuk Pemprosesan Imej
Dalam siaran sebelumnya, kami meneroka asas bekerja dengan imej RGB dalam OpenCV, termasuk memplot dan melaraskan kecerahan dan kontras. Walaupun ruang warna RGB sesuai untuk paparan komputer, kerana ia mewakili warna dari segi keamatan cahaya yang dipancarkan oleh skrin, ia tidak sejajar dengan cara manusia melihat warna di dunia semula jadi. Di sinilah HSV (Hue, Saturation, Value) melangkah masuk—ruang warna yang direka bentuk untuk mewakili warna dengan cara yang lebih dekat dengan persepsi manusia.
Dalam siaran ini, kami akan menyelami HSV, memahami komponennya, meneroka aplikasinya dan mempelajari beberapa helah hebat untuk meningkatkan imej.
HSV bermaksud Hue, Saturation dan Value:
- 0 (atau berhampirannya) masih mewakili merah.
- 60–89 sepadan dengan hijau.
- 120–149 sepadan dengan biru.
- 140–179 dibalut kembali menjadi merah, melengkapkan spektrum bulat.
Ketepuan (S): Ini mentakrifkan keamatan atau ketulenan warna: Warna tepu sepenuhnya tidak mengandungi kelabu dan bersemangat, Warna yang kurang tepu kelihatan lebih tercuci.
Nilai (V): Selalunya dirujuk sebagai kecerahan, ia mengukur kecerahan atau kegelapan Dengan mengasingkan komponen ini, HSV menjadikannya lebih mudah untuk menganalisis dan memanipulasi imej, terutamanya untuk tugas seperti pengesanan warna atau peningkatan. warnanya.
Untuk memahami perkara ini dengan lebih baik, pukulan plot adalah persembahan yang baik tentang nilai-nilai dalam ruang warna
Menukar imej kepada HSV dalam OpenCV adalah mudah dengan fungsi cv2.cvtColor(). Jom tengok:
import cv2 import matplotlib.pyplot as plt image = cv2.imread('./test.png') plt.figure(figsize=(10,10)) plt.subplot(1,2,1) plt.imshow(image[:,:,::-1]) #plot as RGB plt.title("RGB View") hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV) plt.subplot(1,2,2) plt.imshow(hsv) plt.title("HSV View") plt.tight_layout() plt.show()
Pada pandangan pertama, plot HSV mungkin kelihatan pelik—hampir seperti makhluk asing. Ini kerana komputer anda cuba mewakili HSV sebagai imej RGB, walaupun komponen HSV (terutamanya Hue) tidak dipetakan secara langsung kepada nilai RGB. Contohnya:
Untuk contoh berikut seterusnya kami tidak akan menggunakan imej profil tetapi imej yang lebih gelap yang dijana dengan model gen imej Flux ai. kerana ia memberikan kes pengguna HSV yang lebih baik daripada imej profil, kerana kita dapat melihat kesannya dengan lebih baik
Untuk lebih memahami perbezaan antara RGB dan HSV, mari kita plot histogram untuk setiap saluran. Ini kodnya:
import cv2 import matplotlib.pyplot as plt image = cv2.imread('./test.png') plt.figure(figsize=(10,10)) plt.subplot(1,2,1) plt.imshow(image[:,:,::-1]) #plot as RGB plt.title("RGB View") hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV) plt.subplot(1,2,2) plt.imshow(hsv) plt.title("HSV View") plt.tight_layout() plt.show()
Daripada histogram, anda boleh melihat bagaimana saluran HSV berbeza daripada RGB. Perhatikan saluran Hue dalam HSV, yang mempunyai nilai antara 0 dan 179, mewakili kawasan warna yang berbeza, manakala Ketepuan dan Nilai mengendalikan keamatan dan kecerahan.
Sekarang, mari pecahkan imej HSV kepada komponen individunya untuk lebih memahami perkara yang diwakili oleh setiap saluran:
# Plot the histograms plt.figure(figsize=(10, 6)) # RGB Histogram plt.subplot(1, 2, 1) for i, color in enumerate(['r', 'g', 'b']): plt.hist(image[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step') plt.xlim([0, 256]) plt.title("RGB Histogram") # HSV Histogram plt.subplot(1, 2, 2) for i, color in enumerate(['r', 'g', 'b']): plt.hist(hsv[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step') plt.xlim([0, 256]) plt.title("HSV Histogram") plt.show()
Untuk imej dengan pencahayaan tidak sekata, menyamakan saluran Nilai boleh menjadikan kawasan yang lebih gelap lebih kelihatan sambil memberikan kesan "cahaya" kepada kawasan yang lebih terang.
# Plot the individual HSV channels plt.figure(figsize=(10, 6)) plt.subplot(1, 3, 1) plt.imshow(hsv[:, :, 0], cmap='hsv') # Hue plt.title("Hue") plt.subplot(1, 3, 2) plt.imshow(hsv[:, :, 1], cmap='gray') # Saturation plt.title("Saturation") plt.subplot(1, 3, 3) plt.imshow(hsv[:, :, 2], cmap='gray') # Value plt.title("Value") plt.tight_layout() plt.show()
Meningkatkan saluran Ketepuan menjadikan warna dalam imej lebih jelas dan bersemangat.
equ = cv2.equalizeHist(hsv[:, :, 2]) # Equalize the Value channel new_hsv = cv2.merge((hsv[:, :, 0], hsv[:, :, 1], equ)) new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR) # Display results plt.figure(figsize=(10, 6)) plt.subplot(1, 2, 1) plt.imshow(image) plt.title("Original Image") plt.subplot(1, 2, 2) plt.imshow(new_image) plt.title("Brightness Enhanced") plt.tight_layout() plt.show()
Menggunakan saluran Hue, kami boleh mengasingkan warna tertentu. Contohnya, untuk mengekstrak rona merah:
equ = cv2.equalizeHist(hsv[:, :, 1]) # Equalize the Saturation channel new_hsv = cv2.merge((hsv[:, :, 0], equ, hsv[:, :, 2])) new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR) # Display results plt.figure(figsize=(10, 6)) plt.subplot(1, 2, 1) plt.imshow(image) plt.title("Original Image") plt.subplot(1, 2, 2) plt.imshow(new_image) plt.title("Color Enhanced") plt.tight_layout() plt.show()
Teknik ini sangat berguna untuk tugas seperti pengesanan objek, pembahagian warna atau juga kesan artistik.
Ruang warna HSV menawarkan cara yang serba boleh dan intuitif untuk menganalisis dan memanipulasi imej. Dengan mengasingkan warna (Hue), keamatan (Tepu) dan kecerahan (Nilai), HSV memudahkan tugas seperti penapisan warna, peningkatan dan pembahagian. Walaupun RGB sesuai untuk paparan, HSV membuka kemungkinan untuk pemprosesan imej kreatif dan analitikal.
Apakah helah kegemaran anda dengan HSV? Kongsi pendapat anda di bawah, dan mari kita terokai dunia warna yang meriah ini bersama-sama!
Versi ini menggabungkan aliran lancar, penjelasan terperinci dan pemformatan yang konsisten untuk meningkatkan kebolehbacaan dan kefahaman.
Atas ialah kandungan terperinci [CVHSV lwn RGB: Memahami dan Memanfaatkan HSV untuk Pemprosesan Imej. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!