cari
Rumahpembangunan bahagian belakangTutorial Python[CVHSV lwn RGB: Memahami dan Memanfaatkan HSV untuk Pemprosesan Imej

Dalam siaran sebelumnya, kami meneroka asas bekerja dengan imej RGB dalam OpenCV, termasuk memplot dan melaraskan kecerahan dan kontras. Walaupun ruang warna RGB sesuai untuk paparan komputer, kerana ia mewakili warna dari segi keamatan cahaya yang dipancarkan oleh skrin, ia tidak sejajar dengan cara manusia melihat warna di dunia semula jadi. Di sinilah HSV (Hue, Saturation, Value) melangkah masuk—ruang warna yang direka bentuk untuk mewakili warna dengan cara yang lebih dekat dengan persepsi manusia.
Dalam siaran ini, kami akan menyelami HSV, memahami komponennya, meneroka aplikasinya dan mempelajari beberapa helah hebat untuk meningkatkan imej.

Apakah itu HSV?

HSV bermaksud Hue, Saturation dan Value:

  • Hue (H): Ini merujuk kepada jenis warna—merah, hijau, biru, dll. Walaupun secara tradisional diukur dalam darjah pada spektrum bulat (0°–360°), dalam OpenCV, Hue diskalakan kepada 0 –179 untuk dimuatkan dalam integer 8-bit. Berikut ialah pemetaan:
  • 0 (atau berhampirannya) masih mewakili merah.
  • 60–89 sepadan dengan hijau.
  • 120–149 sepadan dengan biru.
  • 140–179 dibalut kembali menjadi merah, melengkapkan spektrum bulat.
  • Ketepuan (S): Ini mentakrifkan keamatan atau ketulenan warna: Warna tepu sepenuhnya tidak mengandungi kelabu dan bersemangat, Warna yang kurang tepu kelihatan lebih tercuci.

  • Nilai (V): Selalunya dirujuk sebagai kecerahan, ia mengukur kecerahan atau kegelapan Dengan mengasingkan komponen ini, HSV menjadikannya lebih mudah untuk menganalisis dan memanipulasi imej, terutamanya untuk tugas seperti pengesanan warna atau peningkatan. warnanya.

Untuk memahami perkara ini dengan lebih baik, pukulan plot adalah persembahan yang baik tentang nilai-nilai dalam ruang warna

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

Menukar Imej kepada HSV dalam OpenCV

Menukar imej kepada HSV dalam OpenCV adalah mudah dengan fungsi cv2.cvtColor(). Jom tengok:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

Pada pandangan pertama, plot HSV mungkin kelihatan pelik—hampir seperti makhluk asing. Ini kerana komputer anda cuba mewakili HSV sebagai imej RGB, walaupun komponen HSV (terutamanya Hue) tidak dipetakan secara langsung kepada nilai RGB. Contohnya:

  • Hue (H): Diwakili sebagai sudut, ia berjulat dari 0 hingga 179 dalam OpenCV (bukan 0 hingga 255 seperti saluran RGB). Ini menyebabkan saluran Hue kelihatan kebanyakannya berwarna biru dalam plot berasaskan RGB.

Untuk contoh berikut seterusnya kami tidak akan menggunakan imej profil tetapi imej yang lebih gelap yang dijana dengan model gen imej Flux ai. kerana ia memberikan kes pengguna HSV yang lebih baik daripada imej profil, kerana kita dapat melihat kesannya dengan lebih baik

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

Memahami HSV Melalui Histogram

Untuk lebih memahami perbezaan antara RGB dan HSV, mari kita plot histogram untuk setiap saluran. Ini kodnya:

import cv2
import matplotlib.pyplot as plt


image = cv2.imread('./test.png')
plt.figure(figsize=(10,10))
plt.subplot(1,2,1)
plt.imshow(image[:,:,::-1]) #plot as RGB 
plt.title("RGB View")
hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
plt.subplot(1,2,2)
plt.imshow(hsv)
plt.title("HSV View")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

Daripada histogram, anda boleh melihat bagaimana saluran HSV berbeza daripada RGB. Perhatikan saluran Hue dalam HSV, yang mempunyai nilai antara 0 dan 179, mewakili kawasan warna yang berbeza, manakala Ketepuan dan Nilai mengendalikan keamatan dan kecerahan.

Memvisualisasikan Hue, Ketepuan dan Nilai

Sekarang, mari pecahkan imej HSV kepada komponen individunya untuk lebih memahami perkara yang diwakili oleh setiap saluran:

# Plot the histograms
plt.figure(figsize=(10, 6))

# RGB Histogram
plt.subplot(1, 2, 1)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(image[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("RGB Histogram")

# HSV Histogram
plt.subplot(1, 2, 2)
for i, color in enumerate(['r', 'g', 'b']):
    plt.hist(hsv[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step')
    plt.xlim([0, 256])
plt.title("HSV Histogram")
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

  • Hue: Memaparkan perbezaan warna yang jelas, menyerlahkan warna dominan dalam imej.
  • Ketepuan: Kawasan yang lebih terang mewakili warna yang terang, manakala kawasan yang lebih gelap menunjukkan rona kelabu yang lebih diredam.
  • Nilai: Menyerlahkan taburan kecerahan, dengan kawasan yang cukup terang kelihatan lebih cerah.

Helah dengan HSV

1. Peningkatan Kecerahan (Penyamaan Nilai)

Untuk imej dengan pencahayaan tidak sekata, menyamakan saluran Nilai boleh menjadikan kawasan yang lebih gelap lebih kelihatan sambil memberikan kesan "cahaya" kepada kawasan yang lebih terang.

# Plot the individual HSV channels
plt.figure(figsize=(10, 6))
plt.subplot(1, 3, 1)
plt.imshow(hsv[:, :, 0], cmap='hsv')  # Hue
plt.title("Hue")
plt.subplot(1, 3, 2)
plt.imshow(hsv[:, :, 1], cmap='gray')  # Saturation
plt.title("Saturation")
plt.subplot(1, 3, 3)
plt.imshow(hsv[:, :, 2], cmap='gray')  # Value
plt.title("Value")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

2. Peningkatan Warna (Penyamaan Ketepuan)

Meningkatkan saluran Ketepuan menjadikan warna dalam imej lebih jelas dan bersemangat.

equ = cv2.equalizeHist(hsv[:, :, 2])  # Equalize the Value channel
new_hsv = cv2.merge((hsv[:, :, 0], hsv[:, :, 1], equ))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Brightness Enhanced")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

3. Penapisan Warna (Merah Mengasingkan)

Menggunakan saluran Hue, kami boleh mengasingkan warna tertentu. Contohnya, untuk mengekstrak rona merah:

equ = cv2.equalizeHist(hsv[:, :, 1])  # Equalize the Saturation channel
new_hsv = cv2.merge((hsv[:, :, 0], equ, hsv[:, :, 2]))
new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR)

# Display results
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.subplot(1, 2, 2)
plt.imshow(new_image)
plt.title("Color Enhanced")
plt.tight_layout()
plt.show()

[CVHSV vs RGB: Understanding and Leveraging HSV for Image Processing

Teknik ini sangat berguna untuk tugas seperti pengesanan objek, pembahagian warna atau juga kesan artistik.

Kesimpulan

Ruang warna HSV menawarkan cara yang serba boleh dan intuitif untuk menganalisis dan memanipulasi imej. Dengan mengasingkan warna (Hue), keamatan (Tepu) dan kecerahan (Nilai), HSV memudahkan tugas seperti penapisan warna, peningkatan dan pembahagian. Walaupun RGB sesuai untuk paparan, HSV membuka kemungkinan untuk pemprosesan imej kreatif dan analitikal.

Apakah helah kegemaran anda dengan HSV? Kongsi pendapat anda di bawah, dan mari kita terokai dunia warna yang meriah ini bersama-sama!

Versi ini menggabungkan aliran lancar, penjelasan terperinci dan pemformatan yang konsisten untuk meningkatkan kebolehbacaan dan kefahaman.

Atas ialah kandungan terperinci [CVHSV lwn RGB: Memahami dan Memanfaatkan HSV untuk Pemprosesan Imej. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Menyenaraikan senarai di Python: Memilih kaedah yang betulMenyenaraikan senarai di Python: Memilih kaedah yang betulMay 14, 2025 am 12:11 AM

Tomergelistsinpython, operator youCanusethe, extendmethod, listcomprehension, oritertools.chain, eachwithspecificadvantages: 1) operatorSimpleButlessefficientficorlargelists;

Bagaimana untuk menggabungkan dua senarai dalam Python 3?Bagaimana untuk menggabungkan dua senarai dalam Python 3?May 14, 2025 am 12:09 AM

Dalam Python 3, dua senarai boleh disambungkan melalui pelbagai kaedah: 1) Pengendali penggunaan, yang sesuai untuk senarai kecil, tetapi tidak cekap untuk senarai besar; 2) Gunakan kaedah Extend, yang sesuai untuk senarai besar, dengan kecekapan memori yang tinggi, tetapi akan mengubah suai senarai asal; 3) menggunakan * pengendali, yang sesuai untuk menggabungkan pelbagai senarai, tanpa mengubah suai senarai asal; 4) Gunakan itertools.chain, yang sesuai untuk set data yang besar, dengan kecekapan memori yang tinggi.

Rentetan senarai concatenate pythonRentetan senarai concatenate pythonMay 14, 2025 am 12:08 AM

Menggunakan kaedah Join () adalah cara yang paling berkesan untuk menyambungkan rentetan dari senarai di Python. 1) Gunakan kaedah Join () untuk menjadi cekap dan mudah dibaca. 2) Kitaran menggunakan pengendali tidak cekap untuk senarai besar. 3) Gabungan pemahaman senarai dan menyertai () sesuai untuk senario yang memerlukan penukaran. 4) Kaedah mengurangkan () sesuai untuk jenis pengurangan lain, tetapi tidak cekap untuk penyambungan rentetan. Kalimat lengkap berakhir.

Pelaksanaan Python, apa itu?Pelaksanaan Python, apa itu?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingpythoncodeIntoExecutableInstructions.1) TheinterpreterreadsTheCode, convertingIntoByteCode, yang mana -mana

Python: Apakah ciri -ciri utamaPython: Apakah ciri -ciri utamaMay 14, 2025 am 12:02 AM

Ciri -ciri utama Python termasuk: 1. Sintaks adalah ringkas dan mudah difahami, sesuai untuk pemula; 2. Sistem jenis dinamik, meningkatkan kelajuan pembangunan; 3. Perpustakaan standard yang kaya, menyokong pelbagai tugas; 4. Komuniti dan ekosistem yang kuat, memberikan sokongan yang luas; 5. Tafsiran, sesuai untuk skrip dan prototaip cepat; 6. Sokongan multi-paradigma, sesuai untuk pelbagai gaya pengaturcaraan.

Python: pengkompil atau penterjemah?Python: pengkompil atau penterjemah?May 13, 2025 am 12:10 AM

Python adalah bahasa yang ditafsirkan, tetapi ia juga termasuk proses penyusunan. 1) Kod python pertama kali disusun ke dalam bytecode. 2) Bytecode ditafsirkan dan dilaksanakan oleh mesin maya Python. 3) Mekanisme hibrid ini menjadikan python fleksibel dan cekap, tetapi tidak secepat bahasa yang disusun sepenuhnya.

Python untuk gelung vs semasa gelung: Bila menggunakan yang mana?Python untuk gelung vs semasa gelung: Bila menggunakan yang mana?May 13, 2025 am 12:07 AM

UseAforLoopWheniteratingOvereForforpecificNumbimes; Useaphileloopwhencontinuinguntilaconditionismet.forloopsareidealforknownownsequences, sementara yang tidak digunakan.

Gelung Python: Kesalahan yang paling biasaGelung Python: Kesalahan yang paling biasaMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops, pengubahsuaianListsduringiteration, off-by-oneerrors, sifar-indexingissues, andnestedloopinefficies.toavoidthese: 1) use'i

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Nordhold: Sistem Fusion, dijelaskan
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.