


Dalam tutorial ini, kami akan membina perancang tugas dikuasakan AI menggunakan ClientAI dan Ollama. Perancang kami akan memecahkan matlamat kepada tugas yang boleh diambil tindakan, mencipta garis masa yang realistik dan mengurus sumber — semua ini dijalankan dalam mesin anda sendiri.
Perancang tugas kami akan mampu:
- Memecahkan matlamat kepada tugasan khusus yang boleh diambil tindakan
- Membuat garis masa yang realistik dengan pengendalian ralat
- Mengurus dan memperuntukkan sumber dengan berkesan
- Menyediakan pelan berstruktur dan berformat
Untuk dokumen ClientAI lihat di sini dan untuk Github Repo, di sini.
Sediakan Persekitaran Kita
Pertama, buat direktori baharu untuk projek anda:
mkdir local_task_planner cd local_task_planner
Pasang ClientAI dengan sokongan Ollama:
pip install clientai[ollama]
Pastikan anda telah memasang Ollama pada sistem anda. Anda boleh mendapatkannya dari tapak web Ollama.
Buat fail Python utama kami:
touch task_planner.py
Mari mulakan dengan import teras kami:
from datetime import datetime, timedelta from typing import Dict, List import logging from clientai import ClientAI from clientai.agent import create_agent, tool from clientai.ollama import OllamaManager logger = logging.getLogger(__name__)
Setiap komponen memainkan peranan penting:
- masa tarikh: Membantu kami mengurus garis masa dan penjadualan tugas
- ClientAI: Menyediakan rangka kerja AI kami
- OllamaManager: Mengurus model AI tempatan kami
- Pelbagai modul utiliti untuk petunjuk jenis dan pengelogan
Membina Teras Perancang Tugas
Pertama, mari buat kelas TaskPlanner kami yang akan mengurus interaksi AI:
class TaskPlanner: """A local task planning system using Ollama.""" def __init__(self): """Initialize the task planner with Ollama.""" self.manager = OllamaManager() self.client = None self.planner = None def start(self): """Start the Ollama server and initialize the client.""" self.manager.start() self.client = ClientAI("ollama", host="http://localhost:11434") self.planner = create_agent( client=self.client, role="task planner", system_prompt="""You are a practical task planner. Break down goals into specific, actionable tasks with realistic time estimates and resource needs. Use the tools provided to validate timelines and format plans properly.""", model="llama3", step="think", tools=[validate_timeline, format_plan], tool_confidence=0.8, stream=True, )
Kelas ini berfungsi sebagai asas kami. Ia menguruskan kitaran hayat pelayan Ollama, mencipta dan mengkonfigurasi klien AI kami dan menyediakan ejen perancangan kami dengan keupayaan khusus.
Mencipta Alat Perancangan Kami
Sekarang mari kita bina alat yang akan digunakan oleh AI kita. Pertama, pengesah garis masa:
@tool(name="validate_timeline") def validate_timeline(tasks: Dict[str, int]) -> Dict[str, dict]: """ Validate time estimates and create a realistic timeline. Args: tasks: Dictionary of task names and estimated hours Returns: Dictionary with start dates and deadlines """ try: current_date = datetime.now() timeline = {} accumulated_hours = 0 for task, hours in tasks.items(): try: hours_int = int(float(str(hours))) if hours_int <p>Pengesah ini menukar anggaran masa kepada hari bekerja, mengendalikan input yang tidak sah dengan anggun, mencipta penjadualan berurutan yang realistik dan menyediakan pengelogan terperinci untuk penyahpepijatan.</p> <p>Seterusnya, mari buat pemformat pelan kami:<br> </p> <pre class="brush:php;toolbar:false">@tool(name="format_plan") def format_plan( tasks: List[str], timeline: Dict[str, dict], resources: List[str] ) -> str: """ Format the plan in a clear, structured way. Args: tasks: List of tasks timeline: Timeline from validate_timeline resources: List of required resources Returns: Formatted plan as a string """ try: plan = "== Project Plan ==\n\n" plan += "Tasks and Timeline:\n" for i, task in enumerate(tasks, 1): if task in timeline: t = timeline[task] plan += f"\n{i}. {task}\n" plan += f" Start: {t['start']}\n" plan += f" End: {t['end']}\n" plan += f" Estimated Hours: {t['hours']}\n" plan += "\nRequired Resources:\n" for resource in resources: plan += f"- {resource}\n" return plan except Exception as e: logger.error(f"Error formatting plan: {str(e)}") return "Error: Unable to format plan"
Di sini kami ingin mencipta output yang konsisten dan boleh dibaca dengan penomboran tugas yang betul dan garis masa yang teratur.
Membina Antara Muka
Mari kita cipta antara muka mesra pengguna untuk perancang kami:
def get_plan(self, goal: str) -> str: """ Generate a plan for the given goal. Args: goal: The goal to plan for Returns: A formatted plan string """ if not self.planner: raise RuntimeError("Planner not initialized. Call start() first.") return self.planner.run(goal) def main(): planner = TaskPlanner() try: print("Task Planner (Local AI)") print("Enter your goal, and I'll create a practical, timeline-based plan.") print("Type 'quit' to exit.") planner.start() while True: print("\n" + "=" * 50 + "\n") goal = input("Enter your goal: ") if goal.lower() == "quit": break try: plan = planner.get_plan(goal) print("\nYour Plan:\n") for chunk in plan: print(chunk, end="", flush=True) except Exception as e: print(f"Error: {str(e)}") finally: planner.stop() if __name__ == "__main__": main()
Antara muka kami menyediakan:
- Kosongkan arahan pengguna
- Penjanaan pelan masa nyata dengan penstriman
- Pengendalian ralat yang betul
- Pengurusan penutupan bersih
Contoh Penggunaan
Berikut ialah perkara yang anda akan lihat apabila anda menjalankan perancang:
Task Planner (Local AI) Enter your goal, and I'll create a practical, timeline-based plan. Type 'quit' to exit. ================================================== Enter your goal: Create a personal portfolio website Your Plan: == Project Plan == Tasks and Timeline: 1. Requirements Analysis and Planning Start: 2024-12-08 End: 2024-12-09 Estimated Hours: 6 2. Design and Wireframing Start: 2024-12-09 End: 2024-12-11 Estimated Hours: 12 3. Content Creation Start: 2024-12-11 End: 2024-12-12 Estimated Hours: 8 4. Development Start: 2024-12-12 End: 2024-12-15 Estimated Hours: 20 Required Resources: - Design software (e.g., Figma) - Text editor or IDE - Web hosting service - Version control system
Penambahbaikan Masa Depan
Pertimbangkan peningkatan ini untuk perancang tugas anda sendiri:
- Tambahkan penjejakan pergantungan antara tugas
- Sertakan pengiraan kos untuk sumber
- Simpan rancangan pada fail atau alatan pengurusan projek
- Jejak kemajuan berbanding pelan asal
- Tambahkan pengesahan untuk ketersediaan sumber
- Laksanakan penjadualan tugas selari
- Tambah sokongan untuk tugasan berulang
- Sertakan tahap keutamaan untuk tugasan
Untuk melihat lebih lanjut tentang ClientAI, pergi ke dokumen.
Berhubung Dengan Saya
Jika anda mempunyai sebarang soalan tentang tutorial ini atau ingin berkongsi peningkatan anda pada perancang tugas, sila hubungi:
- GitHub: igorbenav
- X/Twitter: @igorbenav
- LinkedIn: Igor
Atas ialah kandungan terperinci Membina Perancang Tugas AI Tempatan dengan ClientAI dan Ollama. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Serialization dan deserialization objek Python adalah aspek utama dari mana-mana program bukan remeh. Jika anda menyimpan sesuatu ke fail python, anda melakukan siri objek dan deserialization jika anda membaca fail konfigurasi, atau jika anda menjawab permintaan HTTP. Dalam erti kata, siri dan deserialization adalah perkara yang paling membosankan di dunia. Siapa yang peduli dengan semua format dan protokol ini? Anda mahu berterusan atau mengalirkan beberapa objek python dan mengambilnya sepenuhnya pada masa yang akan datang. Ini adalah cara yang baik untuk melihat dunia pada tahap konseptual. Walau bagaimanapun, pada tahap praktikal, skim siri, format atau protokol yang anda pilih boleh menentukan kelajuan, keselamatan, kebebasan status penyelenggaraan, dan aspek lain dari program

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Tutorial ini dibina pada pengenalan sebelumnya kepada sup yang indah, memberi tumpuan kepada manipulasi DOM di luar navigasi pokok mudah. Kami akan meneroka kaedah dan teknik carian yang cekap untuk mengubahsuai struktur HTML. Satu kaedah carian dom biasa ialah Ex

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Artikel ini membimbing pemaju Python mengenai bangunan baris baris komando (CLI). Butirannya menggunakan perpustakaan seperti Typer, Klik, dan ArgParse, menekankan pengendalian input/output, dan mempromosikan corak reka bentuk mesra pengguna untuk kebolehgunaan CLI yang lebih baik.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Dreamweaver CS6
Alat pembangunan web visual

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna