


Operator Logik untuk Pengindeksan Boolean dalam Panda
Apabila melakukan pengindeksan Boolean dalam Pandas, adalah penting untuk memahami perbezaan antara operator logik & (bitwise AND) dan dan ( logik DAN).
Mengapa Gunakan & over dan untuk Boolean Pengindeksan?
Pertimbangkan contoh berikut:
a = pd.DataFrame({'x': [1, 1], 'y': [10, 20]}) a[(a['x'] == 1) & (a['y'] == 10)]
Kod ini mengembalikan hasil yang dijangkakan:
x y 0 1 10
Walau bagaimanapun, jika anda menggunakan dan bukannya &, anda' akan menghadapi ralat:
a[(a['x'] == 1) and (a['y'] == 10)]
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
Memahami Ralat
Ralat berlaku kerana dan cuba menilai kebenaran setiap Siri secara individu (a['x'] dan a['y']). Walau bagaimanapun, Siri ini tidak mempunyai nilai Boolean yang jelas, yang membawa kepada ralat nilai kebenaran yang tidak jelas.
Sebaliknya, bitwise & operator menjalankan operasi logik mengikut unsur. Ia mengembalikan tatasusunan boolean di mana setiap elemen mewakili hasil operasi antara elemen yang sepadan dalam a['x'] dan a['y']. Ini membolehkan anda mencipta topeng Boolean untuk pengindeksan.
Kurungan: Keperluan Wajib
Perhatikan bahawa adalah wajib untuk menggunakan kurungan apabila menggunakan &. Tanpa mereka, operasi akan dinilai secara salah disebabkan oleh keutamaan pengendali yang lebih tinggi daripada & melebihi ==.
a['x'] == 1 & a['y'] == 10 # Incorrect: Triggers the error (a['x'] == 1) & (a['y'] == 10) # Correct: Boolean indexing works as expected
Kesimpulan
Apabila melakukan pengindeksan boolean dalam Pandas, sentiasa gunakan operator & untuk operasi logik mengikut unsur. Ini memastikan penilaian yang betul dan mengelakkan ralat nilai kebenaran yang tidak jelas.
Atas ialah kandungan terperinci Pengindeksan Boolean Panda: Mengapa Menggunakan `&` Daripada `dan`?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

PythonArraysSupportVariousoperations: 1) SlicingExtractsSubsets, 2) Menambah/ExtendingAddSelements, 3) InsertingPlaceSelementSatSatSatSpecifics, 4) RemovingDeleteselements, 5) Sorting/ReversingChangesOrder,

NumpyarraysareessentialforapplicationRequiringeficientnumericalcomputationsanddatamanipulation.theyarecrucialindaSascience, machinelearning, fizik, kejuruteraan, danfinanceduetotheirabilitytOHandlelarge-Scaledataefisien.Forexample, infinancialanal

UseanArray.arrayoveralistinpythonwhendealingwithhomogeneousdata, criticalcode prestasi, orinterfacingwithccode.1) homogeneousdata: arrayssavemememorywithtypedelements.2)

Tidak, notalllistoperationsaresuportedByArrays, andviceversa.1) arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing, whyimpactsperformance.2) listsdonotguaranteeconstantTimeComplexityFordirectacesscesscesscesscesscesscesscesscesscesessd.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.
