


Memahami itertools.groupby(): Mengumpulkan Data dalam Python
Intertools.groupby() ialah fungsi Python yang berkuasa yang membolehkan anda mengumpulkan unsur-unsur yang boleh dilelang berdasarkan fungsi utama yang ditentukan. Ini amat berguna apabila anda perlu membahagikan data ke dalam kategori logik atau melakukan operasi pada kumpulan item yang berkaitan.
Untuk menggunakan itertools.groupby(), anda menyediakan dua hujah: data yang akan dikumpulkan dan kunci fungsi yang menentukan kriteria pengelompokan. Fungsi utama menerima setiap elemen dalam data dan mengembalikan nilai yang mana elemen akan dikumpulkan.
Satu perkara penting yang perlu diberi perhatian ialah groupby() tidak mengisih data sebelum mengumpulkan. Jika anda memerlukan kumpulan anda untuk diisih, anda mungkin perlu mengisih data sendiri sebelum menggunakan groupby().
Contoh Penggunaan
Mari kita pertimbangkan contoh untuk menunjukkan penggunaan itertools.groupby():
from itertools import groupby # Data to group: a list of tuples representing (fruit, size) pairs data = [('apple', 'small'), ('banana', 'medium'), ('orange', 'large'), ('apple', 'large'), ('banana', 'small'), ('pear', 'small')] # Define the key function to group by fruit type key_func = lambda item: item[0] # Group the data by fruit type grouped = groupby(data, key_func)
Selepas mengumpulkan, dikumpulkan ialah lelaran (kunci, kumpulan) berpasangan. Setiap kekunci mewakili jenis buah yang unik, dan kumpulan itu adalah lelaran bagi tupel asal yang tergolong dalam jenis buah tersebut.
Lelaran ke atas Kumpulan
Untuk mengulangi setiap kumpulan dalam lelaran berkumpulan, anda boleh menggunakan gelung bersarang:
for fruit_type, group_iterator in grouped: # Iterate over the current group, which contains tuples for the fruit type for fruit, size in group_iterator: # Process the fruit and size print(f'{fruit} is {size}')
Alternatif Pendekatan
Dalam kes tertentu, anda mungkin menghadapi situasi di mana groupby() bukanlah pilihan yang paling berkesan. Jika anda menggunakan set data yang sangat besar atau jika fungsi utama adalah sangat kompleks, groupby() boleh menjadi mahal dari segi pengiraan.
Pertimbangkan alternatif berikut:
- koleksi. defaultdict(list): Kamus yang mencipta senarai baharu secara automatik untuk setiap kunci yang belum ada hadir.
- Pandas DataFrame.groupby(): Mekanisme pengumpulan data yang lebih komprehensif yang disediakan oleh perpustakaan Pandas.
Sumber Tambahan
Untuk pemahaman lanjut tentang itertools.groupby(), rujuk perkara berikut sumber:
- [Python itertools.groupby() dokumentasi](https://docs.python.org/3/library/itertools.html#itertools.groupby)
- [ Python itertools groupby() fungsi tutorial](https://www.datacamp.com/courses/itertools-python-tutorial)
Atas ialah kandungan terperinci Bagaimanakah `itertools.groupby()` Python boleh berfungsi dengan cekap mengumpulkan data boleh lelar berdasarkan kunci yang ditentukan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Artikel ini membimbing pemaju Python mengenai bangunan baris baris komando (CLI). Butirannya menggunakan perpustakaan seperti Typer, Klik, dan ArgParse, menekankan pengendalian input/output, dan mempromosikan corak reka bentuk mesra pengguna untuk kebolehgunaan CLI yang lebih baik.

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Artikel ini membincangkan peranan persekitaran maya di Python, memberi tumpuan kepada menguruskan kebergantungan projek dan mengelakkan konflik. Ia memperincikan penciptaan, pengaktifan, dan faedah mereka dalam meningkatkan pengurusan projek dan mengurangkan isu pergantungan.

Ekspresi biasa adalah alat yang berkuasa untuk memadankan corak dan manipulasi teks dalam pengaturcaraan, meningkatkan kecekapan dalam pemprosesan teks merentasi pelbagai aplikasi.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Dreamweaver CS6
Alat pembangunan web visual

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini