Beli Saya Kopi☕
*Siaran saya menerangkan Moving MNIST.
MovingMNIST() boleh menggunakan Moving MNIST dataset seperti yang ditunjukkan di bawah:
*Memo:
- Argumen pertama ialah root(Required-Type:str or pathlib.Path). *Laluan mutlak atau relatif boleh dilakukan.
- Argumen ke-2 dipecahkan(Optional-Default:None-Type:str):
*Memo:
- Tiada, "kereta api" atau "ujian" boleh ditetapkan padanya.
- Jika Tiada, kesemua 20 bingkai(imej) setiap video dikembalikan, mengabaikan nisbah_pecah.
- Argumen ke-3 ialah split_ratio(Optional-Default:10-Type:int):
*Memo:
- Jika split ialah "kereta api", data[:, :split_ratio] dikembalikan.
- Jika belah ialah "ujian", data[:, split_ratio:] dikembalikan.
- Jika perpecahan Tiada, ia diabaikan. mengabaikan nisbah_pecah.
- Argumen ke-4 ialah transform(Optional-Default:None-Type:callable).
- Argumen ke-5 ialah muat turun(Optional-Default:False-Type:bool):
*Memo:
- Jika Benar, set data dimuat turun dari internet ke akar.
- Jika ia Benar dan set data sudah dimuat turun, ia akan diekstrak.
- Jika ia Benar dan set data sudah dimuat turun, tiada apa yang berlaku.
- Ia sepatutnya Palsu jika set data sudah dimuat turun kerana ia lebih pantas.
- Anda boleh memuat turun dan mengekstrak set data secara manual dari sini ke mis. data/MovingMNIST/.
from torchvision.datasets import MovingMNIST all_data = MovingMNIST( root="data" ) all_data = MovingMNIST( root="data", split=None, split_ratio=10, download=False, transform=None ) train_data = MovingMNIST( root="data", split="train" ) test_data = MovingMNIST( root="data", split="test" ) len(all_data), len(train_data), len(test_data) # (10000, 10000, 10000) len(all_data[0]), len(train_data[0]), len(test_data[0]) # (20, 10, 10) all_data # Dataset MovingMNIST # Number of datapoints: 10000 # Root location: data all_data.root # 'data' print(all_data.split) # None all_data.split_ratio # 10 all_data.download # <bound method movingmnist.download of dataset movingmnist number datapoints: root location: data> print(all_data.transform) # None from torchvision.datasets import MovingMNIST import matplotlib.pyplot as plt plt.figure(figsize=(10, 3)) plt.subplot(1, 3, 1) plt.title("all_data") plt.imshow(all_data[0].squeeze()[0]) plt.subplot(1, 3, 2) plt.title("train_data") plt.imshow(train_data[0].squeeze()[0]) plt.subplot(1, 3, 3) plt.title("test_data") plt.imshow(test_data[0].squeeze()[0]) plt.show() </bound>
from torchvision.datasets import MovingMNIST all_data = MovingMNIST( root="data", split=None ) train_data = MovingMNIST( root="data", split="train" ) test_data = MovingMNIST( root="data", split="test" ) def show_images(data, main_title=None): plt.figure(figsize=(10, 8)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, image in enumerate(data, start=1): plt.subplot(4, 5, i) plt.tight_layout(pad=1.0) plt.title(i) plt.imshow(image) plt.show() show_images(data=all_data[0].squeeze(), main_title="all_data") show_images(data=train_data[0].squeeze(), main_title="train_data") show_images(data=test_data[0].squeeze(), main_title="test_data")
from torchvision.datasets import MovingMNIST all_data = MovingMNIST( root="data", split=None ) train_data = MovingMNIST( root="data", split="train" ) test_data = MovingMNIST( root="data", split="test" ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 8)) plt.suptitle(t=main_title, y=1.0, fontsize=14) col = 5 for i, image in enumerate(data, start=1): plt.subplot(4, 5, i) plt.tight_layout(pad=1.0) plt.title(i) plt.imshow(image.squeeze()[0]) if i == col: break plt.show() show_images(data=all_data, main_title="all_data") show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data")
from torchvision.datasets import MovingMNIST import matplotlib.animation as animation all_data = MovingMNIST( root="data" ) import matplotlib.pyplot as plt from IPython.display import HTML figure, axis = plt.subplots() # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `ArtistAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ images = [] for image in all_data[0].squeeze(): images.append([axis.imshow(image)]) ani = animation.ArtistAnimation(fig=figure, artists=images, interval=100) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `ArtistAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `FuncAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ # def animate(i): # axis.imshow(all_data[0].squeeze()[i]) # # ani = animation.FuncAnimation(fig=figure, func=animate, # frames=20, interval=100) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `FuncAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ani.save('result.gif') # Save the animation as a `.gif` file plt.ioff() # Hide a useless image # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ HTML(ani.to_jshtml()) # Animation operator # HTML(ani.to_html5_video()) # Animation video # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ # plt.rcParams["animation.html"] = "jshtml" # Animation operator # plt.rcParams["animation.html"] = "html5" # Animation video # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
from torchvision.datasets import MovingMNIST from ipywidgets import interact, IntSlider all_data = MovingMNIST( root="data" ) import matplotlib.pyplot as plt from IPython.display import HTML def func(i): plt.imshow(all_data[0].squeeze()[i]) interact(func, i=(0, 19, 1)) # interact(func, i=IntSlider(min=0, max=19, step=1, value=0)) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Set the start value ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ plt.show()
Atas ialah kandungan terperinci MovingMNIST dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Memuatkan Fail Pickle di Python 3.6 Kesalahan Laporan Alam Sekitar: ModulenotFoundError: Nomodulenamed ...

Bagaimana untuk menyelesaikan masalah segmentasi kata Jieba dalam analisis komen tempat yang indah? Semasa kami mengadakan komen dan analisis tempat yang indah, kami sering menggunakan alat segmentasi perkataan jieba untuk memproses teks ...

Bagaimana cara menggunakan ungkapan biasa untuk memadankan tag tertutup pertama dan berhenti? Semasa berurusan dengan HTML atau bahasa markup lain, ungkapan biasa sering diperlukan untuk ...

Memahami Strategi Anti-Crawling of Investing.com Ramai orang sering cuba merangkak data berita dari Investing.com (https://cn.investing.com/news/latest-news) ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Dreamweaver CS6
Alat pembangunan web visual

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa