Beli Saya Kopi☕
*Siaran saya menerangkan Moving MNIST.
MovingMNIST() boleh menggunakan Moving MNIST dataset seperti yang ditunjukkan di bawah:
*Memo:
- Argumen pertama ialah root(Required-Type:str or pathlib.Path). *Laluan mutlak atau relatif boleh dilakukan.
- Argumen ke-2 dipecahkan(Optional-Default:None-Type:str):
*Memo:
- Tiada, "kereta api" atau "ujian" boleh ditetapkan padanya.
- Jika Tiada, kesemua 20 bingkai(imej) setiap video dikembalikan, mengabaikan nisbah_pecah.
- Argumen ke-3 ialah split_ratio(Optional-Default:10-Type:int):
*Memo:
- Jika split ialah "kereta api", data[:, :split_ratio] dikembalikan.
- Jika belah ialah "ujian", data[:, split_ratio:] dikembalikan.
- Jika perpecahan Tiada, ia diabaikan. mengabaikan nisbah_pecah.
- Argumen ke-4 ialah transform(Optional-Default:None-Type:callable).
- Argumen ke-5 ialah muat turun(Optional-Default:False-Type:bool):
*Memo:
- Jika Benar, set data dimuat turun dari internet ke akar.
- Jika ia Benar dan set data sudah dimuat turun, ia akan diekstrak.
- Jika ia Benar dan set data sudah dimuat turun, tiada apa yang berlaku.
- Ia sepatutnya Palsu jika set data sudah dimuat turun kerana ia lebih pantas.
- Anda boleh memuat turun dan mengekstrak set data secara manual dari sini ke mis. data/MovingMNIST/.
from torchvision.datasets import MovingMNIST all_data = MovingMNIST( root="data" ) all_data = MovingMNIST( root="data", split=None, split_ratio=10, download=False, transform=None ) train_data = MovingMNIST( root="data", split="train" ) test_data = MovingMNIST( root="data", split="test" ) len(all_data), len(train_data), len(test_data) # (10000, 10000, 10000) len(all_data[0]), len(train_data[0]), len(test_data[0]) # (20, 10, 10) all_data # Dataset MovingMNIST # Number of datapoints: 10000 # Root location: data all_data.root # 'data' print(all_data.split) # None all_data.split_ratio # 10 all_data.download # <bound method movingmnist.download of dataset movingmnist number datapoints: root location: data> print(all_data.transform) # None from torchvision.datasets import MovingMNIST import matplotlib.pyplot as plt plt.figure(figsize=(10, 3)) plt.subplot(1, 3, 1) plt.title("all_data") plt.imshow(all_data[0].squeeze()[0]) plt.subplot(1, 3, 2) plt.title("train_data") plt.imshow(train_data[0].squeeze()[0]) plt.subplot(1, 3, 3) plt.title("test_data") plt.imshow(test_data[0].squeeze()[0]) plt.show() </bound>
from torchvision.datasets import MovingMNIST all_data = MovingMNIST( root="data", split=None ) train_data = MovingMNIST( root="data", split="train" ) test_data = MovingMNIST( root="data", split="test" ) def show_images(data, main_title=None): plt.figure(figsize=(10, 8)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, image in enumerate(data, start=1): plt.subplot(4, 5, i) plt.tight_layout(pad=1.0) plt.title(i) plt.imshow(image) plt.show() show_images(data=all_data[0].squeeze(), main_title="all_data") show_images(data=train_data[0].squeeze(), main_title="train_data") show_images(data=test_data[0].squeeze(), main_title="test_data")
from torchvision.datasets import MovingMNIST all_data = MovingMNIST( root="data", split=None ) train_data = MovingMNIST( root="data", split="train" ) test_data = MovingMNIST( root="data", split="test" ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 8)) plt.suptitle(t=main_title, y=1.0, fontsize=14) col = 5 for i, image in enumerate(data, start=1): plt.subplot(4, 5, i) plt.tight_layout(pad=1.0) plt.title(i) plt.imshow(image.squeeze()[0]) if i == col: break plt.show() show_images(data=all_data, main_title="all_data") show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data")
from torchvision.datasets import MovingMNIST import matplotlib.animation as animation all_data = MovingMNIST( root="data" ) import matplotlib.pyplot as plt from IPython.display import HTML figure, axis = plt.subplots() # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `ArtistAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ images = [] for image in all_data[0].squeeze(): images.append([axis.imshow(image)]) ani = animation.ArtistAnimation(fig=figure, artists=images, interval=100) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `ArtistAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `FuncAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ # def animate(i): # axis.imshow(all_data[0].squeeze()[i]) # # ani = animation.FuncAnimation(fig=figure, func=animate, # frames=20, interval=100) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `FuncAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ani.save('result.gif') # Save the animation as a `.gif` file plt.ioff() # Hide a useless image # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ HTML(ani.to_jshtml()) # Animation operator # HTML(ani.to_html5_video()) # Animation video # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ # plt.rcParams["animation.html"] = "jshtml" # Animation operator # plt.rcParams["animation.html"] = "html5" # Animation video # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
from torchvision.datasets import MovingMNIST from ipywidgets import interact, IntSlider all_data = MovingMNIST( root="data" ) import matplotlib.pyplot as plt from IPython.display import HTML def func(i): plt.imshow(all_data[0].squeeze()[i]) interact(func, i=(0, 19, 1)) # interact(func, i=IntSlider(min=0, max=19, step=1, value=0)) # ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Set the start value ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ plt.show()
Atas ialah kandungan terperinci MovingMNIST dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

PythonArraysSupportVariousoperations: 1) SlicingExtractsSubsets, 2) Menambah/ExtendingAddSelements, 3) InsertingPlaceSelementSatSatSatSpecifics, 4) RemovingDeleteselements, 5) Sorting/ReversingChangesOrder,

NumpyarraysareessentialforapplicationRequiringeficientnumericalcomputationsanddatamanipulation.theyarecrucialindaSascience, machinelearning, fizik, kejuruteraan, danfinanceduetotheirabilitytOHandlelarge-Scaledataefisien.Forexample, infinancialanal

UseanArray.arrayoveralistinpythonwhendealingwithhomogeneousdata, criticalcode prestasi, orinterfacingwithccode.1) homogeneousdata: arrayssavemememorywithtypedelements.2)

Tidak, notalllistoperationsaresuportedByArrays, andviceversa.1) arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing, whyimpactsperformance.2) listsdonotguaranteeconstantTimeComplexityFordirectacesscesscesscesscesscesscesscesscesscesessd.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Dreamweaver CS6
Alat pembangunan web visual

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.
