cari
Rumahpembangunan bahagian belakangTutorial PythonApakah Perbezaan Antara `iloc` dan `loc` Panda untuk Pemilihan Data?

What's the Difference Between Pandas' `iloc` and `loc` for Data Selection?

Bagaimana iloc dan loc Berbeza: Label lwn. Lokasi

Memahami Perbezaan

The perbezaan utama antara iloc dan loc terletak pada cara mereka mengakses baris dan lajur:

  • loc: Mengesan data menggunakan baris dan lajur label. Label ini biasanya nilai indeks atau nama lajur.
  • iloc: Mengesan data menggunakan baris dan lajur lokasi integer. Lokasi ini merujuk kepada kedudukan elemen dalam DataFrame.

Demonstrasi

Pertimbangkan contoh DataFrame di bawah:

Index Column A
0 John
1 Mary
2 Peter

Mengekstrak 5 yang pertama baris:

  • loc[:5]: Mengembalikan semua baris dengan label indeks 0 hingga 4 (termasuk).
  • iloc[ :5]: Mengembalikan 5 baris pertama di lokasi integer 0 hingga 4 (eksklusif).

Menjelaskan Perbezaan

Untuk menggambarkan lebih lanjut, pertimbangkan indeks tidak monotonik:

Index Series
49 a
48 b
47 c
0 d
1 e
2 f

Mengakses nilai pada label indeks 0:

  • loc[0] mengambil 'd' kerana menggunakan label indeks.
  • iloc[0] mengambil 'a ' kerana ia menggunakan lokasi integer (walaupun lokasi integer 'd' ialah 3).

Mengakses sepotong baris:

  • loc[0:1] mendapatkan semula baris dengan label indeks 0 dan 1 (termasuk) .
  • iloc[0:1] mendapatkan semula hanya baris di lokasi indeks 0 (dan tidak termasuk baris 1).

Pertimbangan Tambahan

  • Label yang tiada: loc menimbulkan KeyError jika label yang ditentukan tiada dalam indeks, manakala iloc mengembalikan IndexError.
  • Siri Boolean: loc boleh mengindeks melalui Siri Boolean, manakala iloc mengembalikan NotImplementedError.
  • Callables: loc dan iloc boleh kedua-duanya menggunakan boleh panggil sebagai pengindeks, tetapi mereka mengendalikan nilai di luar sempadan berbeza.

Atas ialah kandungan terperinci Apakah Perbezaan Antara `iloc` dan `loc` Panda untuk Pemilihan Data?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Cara Menggunakan Python untuk Mencari Pengagihan Zipf Fail TeksCara Menggunakan Python untuk Mencari Pengagihan Zipf Fail TeksMar 05, 2025 am 09:58 AM

Tutorial ini menunjukkan cara menggunakan Python untuk memproses konsep statistik undang -undang ZIPF dan menunjukkan kecekapan membaca dan menyusun fail teks besar Python semasa memproses undang -undang. Anda mungkin tertanya -tanya apa maksud pengedaran ZIPF istilah. Untuk memahami istilah ini, kita perlu menentukan undang -undang Zipf. Jangan risau, saya akan cuba memudahkan arahan. Undang -undang Zipf Undang -undang Zipf hanya bermaksud: Dalam korpus bahasa semulajadi yang besar, kata -kata yang paling kerap berlaku muncul kira -kira dua kali lebih kerap sebagai kata -kata kerap kedua, tiga kali sebagai kata -kata kerap ketiga, empat kali sebagai kata -kata kerap keempat, dan sebagainya. Mari kita lihat contoh. Jika anda melihat corpus coklat dalam bahasa Inggeris Amerika, anda akan melihat bahawa perkataan yang paling kerap adalah "th

Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?Bagaimana saya menggunakan sup yang indah untuk menghuraikan html?Mar 10, 2025 pm 06:54 PM

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Penapisan gambar di pythonPenapisan gambar di pythonMar 03, 2025 am 09:44 AM

Berurusan dengan imej yang bising adalah masalah biasa, terutamanya dengan telefon bimbit atau foto kamera resolusi rendah. Tutorial ini meneroka teknik penapisan imej di Python menggunakan OpenCV untuk menangani isu ini. Penapisan Imej: Alat yang berkuasa Penapis Imej

Cara Bekerja Dengan Dokumen PDF Menggunakan PythonCara Bekerja Dengan Dokumen PDF Menggunakan PythonMar 02, 2025 am 09:54 AM

Fail PDF adalah popular untuk keserasian silang platform mereka, dengan kandungan dan susun atur yang konsisten merentasi sistem operasi, peranti membaca dan perisian. Walau bagaimanapun, tidak seperti Python memproses fail teks biasa, fail PDF adalah fail binari dengan struktur yang lebih kompleks dan mengandungi unsur -unsur seperti fon, warna, dan imej. Mujurlah, tidak sukar untuk memproses fail PDF dengan modul luaran Python. Artikel ini akan menggunakan modul PYPDF2 untuk menunjukkan cara membuka fail PDF, mencetak halaman, dan mengekstrak teks. Untuk penciptaan dan penyuntingan fail PDF, sila rujuk tutorial lain dari saya. Penyediaan Inti terletak pada menggunakan modul luaran PYPDF2. Pertama, pasangkannya menggunakan PIP: Pip adalah p

Cara Cache Menggunakan Redis dalam Aplikasi DjangoCara Cache Menggunakan Redis dalam Aplikasi DjangoMar 02, 2025 am 10:10 AM

Tutorial ini menunjukkan cara memanfaatkan caching redis untuk meningkatkan prestasi aplikasi python, khususnya dalam rangka kerja Django. Kami akan merangkumi pemasangan Redis, konfigurasi Django, dan perbandingan prestasi untuk menyerlahkan bene

Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?Bagaimana untuk melakukan pembelajaran mendalam dengan Tensorflow atau Pytorch?Mar 10, 2025 pm 06:52 PM

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Cara Melaksanakan Struktur Data Anda Sendiri di PythonCara Melaksanakan Struktur Data Anda Sendiri di PythonMar 03, 2025 am 09:28 AM

Tutorial ini menunjukkan mewujudkan struktur data saluran paip tersuai di Python 3, memanfaatkan kelas dan pengendali yang berlebihan untuk fungsi yang dipertingkatkan. Fleksibiliti saluran paip terletak pada keupayaannya untuk menggunakan siri fungsi ke set data, GE

Pengenalan kepada pengaturcaraan selari dan serentak di PythonPengenalan kepada pengaturcaraan selari dan serentak di PythonMar 03, 2025 am 10:32 AM

Python, kegemaran sains dan pemprosesan data, menawarkan ekosistem yang kaya untuk pengkomputeran berprestasi tinggi. Walau bagaimanapun, pengaturcaraan selari dalam Python memberikan cabaran yang unik. Tutorial ini meneroka cabaran -cabaran ini, memberi tumpuan kepada Interprete Global

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

PhpStorm versi Mac

PhpStorm versi Mac

Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

mPDF

mPDF

mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.