cari
Rumahpembangunan bahagian belakangTutorial PythonMembina Aplikasi LLM Pintar dengan Rantaian Bersyarat - Penyelaman Dalam

Building Intelligent LLM Applications with Conditional Chains - A Deep Dive

TL;DR

  • Kuasai strategi penghalaan dinamik dalam aplikasi LLM
  • Laksanakan mekanisme pengendalian ralat yang mantap
  • Membina sistem pemprosesan kandungan berbilang bahasa yang praktikal
  • Ketahui amalan terbaik untuk strategi degradasi

Memahami Penghalaan Dinamik

Dalam aplikasi LLM yang kompleks, input yang berbeza selalunya memerlukan laluan pemprosesan yang berbeza. Penghalaan dinamik membantu:

  • Optimumkan penggunaan sumber
  • Tingkatkan ketepatan tindak balas
  • Tingkatkan kebolehpercayaan sistem
  • Kawal kos pemprosesan

Reka Bentuk Strategi Laluan

1. Komponen Teras

from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
from typing import Optional, List
import asyncio

class RouteDecision(BaseModel):
    route: str = Field(description="The selected processing route")
    confidence: float = Field(description="Confidence score of the decision")
    reasoning: str = Field(description="Explanation for the routing decision")

class IntelligentRouter:
    def __init__(self, routes: List[str]):
        self.routes = routes
        self.parser = PydanticOutputParser(pydantic_object=RouteDecision)
        self.route_prompt = ChatPromptTemplate.from_template(
            """Analyze the following input and decide the best processing route.
            Available routes: {routes}
            Input: {input}
            {format_instructions}
            """
        )

2. Logik Pemilihan Laluan

    async def decide_route(self, input_text: str) -> RouteDecision:
        prompt = self.route_prompt.format(
            routes=self.routes,
            input=input_text,
            format_instructions=self.parser.get_format_instructions()
        )

        chain = LLMChain(
            llm=self.llm,
            prompt=self.route_prompt
        )

        result = await chain.arun(input=input_text)
        return self.parser.parse(result)

Kes Praktikal: Sistem Kandungan Berbilang Bahasa

1. Seni Bina Sistem

class MultiLangProcessor:
    def __init__(self):
        self.router = IntelligentRouter([
            "translation",
            "summarization",
            "sentiment_analysis",
            "content_moderation"
        ])
        self.processors = {
            "translation": TranslationChain(),
            "summarization": SummaryChain(),
            "sentiment_analysis": SentimentChain(),
            "content_moderation": ModerationChain()
        }

    async def process(self, content: str) -> Dict:
        try:
            route = await self.router.decide_route(content)
            if route.confidence 



<h3>
  
  
  2. Perlaksanaan Pengendalian Ralat
</h3>



<pre class="brush:php;toolbar:false">class ErrorHandler:
    def __init__(self):
        self.fallback_llm = ChatOpenAI(
            model_name="gpt-3.5-turbo",
            temperature=0.3
        )
        self.retry_limit = 3
        self.backoff_factor = 1.5

    async def handle_error(
        self, 
        error: Exception, 
        context: Dict
    ) -> Dict:
        error_type = type(error).__name__

        if error_type in self.error_strategies:
            return await self.error_strategies[error_type](
                error, context
            )

        return await self.default_error_handler(error, context)

    async def retry_with_backoff(
        self, 
        func, 
        *args, 
        **kwargs
    ):
        for attempt in range(self.retry_limit):
            try:
                return await func(*args, **kwargs)
            except Exception as e:
                if attempt == self.retry_limit - 1:
                    raise e
                await asyncio.sleep(
                    self.backoff_factor ** attempt
                )

Contoh Strategi Degradasi

1. Rantaian Fallback Model

class ModelFallbackChain:
    def __init__(self):
        self.models = [
            ChatOpenAI(model_name="gpt-4"),
            ChatOpenAI(model_name="gpt-3.5-turbo"),
            ChatOpenAI(model_name="gpt-3.5-turbo-16k")
        ]

    async def run_with_fallback(
        self, 
        prompt: str
    ) -> Optional[str]:
        for model in self.models:
            try:
                return await self.try_model(model, prompt)
            except Exception as e:
                continue

        return await self.final_fallback(prompt)

2. Strategi Pecahan Kandungan

class ChunkingStrategy:
    def __init__(self, chunk_size: int = 1000):
        self.chunk_size = chunk_size

    def chunk_content(
        self, 
        content: str
    ) -> List[str]:
        # Implement smart content chunking
        return [
            content[i:i + self.chunk_size]
            for i in range(0, len(content), self.chunk_size)
        ]

    async def process_chunks(
        self, 
        chunks: List[str]
    ) -> List[Dict]:
        results = []
        for chunk in chunks:
            try:
                result = await self.process_single_chunk(chunk)
                results.append(result)
            except Exception as e:
                results.append(self.handle_chunk_error(e, chunk))
        return results

Amalan dan Syor Terbaik

  1. Prinsip Reka Bentuk Laluan

    • Pastikan laluan fokus dan khusus
    • Laksanakan laluan sandaran yang jelas
    • Pantau metrik prestasi laluan
  2. Garis Panduan Pengendalian Ralat

    • Melaksanakan strategi sandaran bergraduat
    • Log ralat secara menyeluruh
    • Sediakan amaran untuk kegagalan kritikal
  3. Pengoptimuman Prestasi

    • Cache keputusan penghalaan biasa
    • Laksanakan pemprosesan serentak jika boleh
    • Pantau dan laraskan ambang penghalaan

Kesimpulan

Rantai bersyarat adalah penting untuk membina aplikasi LLM yang mantap. Ambilan penting:

  • Reka bentuk strategi penghalaan yang jelas
  • Laksanakan pengendalian ralat menyeluruh
  • Rancang untuk senario kemerosotan
  • Pantau dan optimumkan prestasi

Atas ialah kandungan terperinci Membina Aplikasi LLM Pintar dengan Rantaian Bersyarat - Penyelaman Dalam. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python vs C: Memahami perbezaan utamaPython vs C: Memahami perbezaan utamaApr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Python vs C: Bahasa mana yang harus dipilih untuk projek anda?Python vs C: Bahasa mana yang harus dipilih untuk projek anda?Apr 21, 2025 am 12:17 AM

Memilih Python atau C bergantung kepada keperluan projek: 1) Jika anda memerlukan pembangunan pesat, pemprosesan data dan reka bentuk prototaip, pilih Python; 2) Jika anda memerlukan prestasi tinggi, latensi rendah dan kawalan perkakasan yang rapat, pilih C.

Mencapai matlamat python anda: kekuatan 2 jam sehariMencapai matlamat python anda: kekuatan 2 jam sehariApr 20, 2025 am 12:21 AM

Dengan melabur 2 jam pembelajaran python setiap hari, anda dapat meningkatkan kemahiran pengaturcaraan anda dengan berkesan. 1. Ketahui Pengetahuan Baru: Baca dokumen atau tutorial menonton. 2. Amalan: Tulis kod dan latihan lengkap. 3. Kajian: Menyatukan kandungan yang telah anda pelajari. 4. Amalan Projek: Sapukan apa yang telah anda pelajari dalam projek sebenar. Pelan pembelajaran berstruktur seperti ini dapat membantu anda menguasai Python secara sistematik dan mencapai matlamat kerjaya.

Memaksimumkan 2 Jam: Strategi Pembelajaran Python BerkesanMemaksimumkan 2 Jam: Strategi Pembelajaran Python BerkesanApr 20, 2025 am 12:20 AM

Kaedah untuk belajar python dengan cekap dalam masa dua jam termasuk: 1. Semak pengetahuan asas dan pastikan anda sudah biasa dengan pemasangan Python dan sintaks asas; 2. Memahami konsep teras python, seperti pembolehubah, senarai, fungsi, dan lain -lain; 3. Menguasai penggunaan asas dan lanjutan dengan menggunakan contoh; 4. Belajar kesilapan biasa dan teknik debugging; 5. Memohon pengoptimuman prestasi dan amalan terbaik, seperti menggunakan komprehensif senarai dan mengikuti panduan gaya PEP8.

Memilih antara python dan c: bahasa yang sesuai untuk andaMemilih antara python dan c: bahasa yang sesuai untuk andaApr 20, 2025 am 12:20 AM

Python sesuai untuk pemula dan sains data, dan C sesuai untuk pengaturcaraan sistem dan pembangunan permainan. 1. Python adalah mudah dan mudah digunakan, sesuai untuk sains data dan pembangunan web. 2.C menyediakan prestasi dan kawalan yang tinggi, sesuai untuk pembangunan permainan dan pengaturcaraan sistem. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Python vs C: Analisis perbandingan bahasa pengaturcaraanPython vs C: Analisis perbandingan bahasa pengaturcaraanApr 20, 2025 am 12:14 AM

Python lebih sesuai untuk sains data dan perkembangan pesat, manakala C lebih sesuai untuk prestasi tinggi dan pengaturcaraan sistem. 1. Sintaks Python adalah ringkas dan mudah dipelajari, sesuai untuk pemprosesan data dan pengkomputeran saintifik. 2.C mempunyai sintaks kompleks tetapi prestasi yang sangat baik dan sering digunakan dalam pembangunan permainan dan pengaturcaraan sistem.

2 jam sehari: potensi pembelajaran python2 jam sehari: potensi pembelajaran pythonApr 20, 2025 am 12:14 AM

Adalah mungkin untuk melabur dua jam sehari untuk belajar Python. 1. Belajar Pengetahuan Baru: Ketahui konsep baru dalam satu jam, seperti senarai dan kamus. 2. Amalan dan Amalan: Gunakan satu jam untuk melakukan latihan pengaturcaraan, seperti menulis program kecil. Melalui perancangan dan ketekunan yang munasabah, anda boleh menguasai konsep teras Python dalam masa yang singkat.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaanPython vs C: Lengkung pembelajaran dan kemudahan penggunaanApr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma