cari
Rumahpembangunan bahagian belakangTutorial PythonBagaimanakah Saya Meningkatkan Pengecualian dengan Berkesan dalam Python?

How Do I Effectively Raise Exceptions in Python?

Meningkatkan Pengecualian dalam Python

Dalam Python, pengecualian berfungsi sebagai cara memberi isyarat ralat atau keadaan luar biasa semasa pelaksanaan program. Untuk menaikkan pengecualian secara manual, pernyataan kenaikan digunakan.

Meningkatkan Pengecualian Secara Manual

Untuk menimbulkan pengecualian, gunakan pembina untuk kelas Pengecualian khusus yang paling menggambarkan isu anda. Contohnya:

raise ValueError('A very specific bad thing happened.')

Ini membolehkan anda memberikan mesej ralat tersuai yang memudahkan untuk mengenal pasti puncanya.

Mengelakkan Pengecualian Generik

Elakkan daripada menaikkan generik Pengecualian seperti Pengecualian. Ini menjadi sukar untuk ditangkap kerana anda perlu menangkap semua pengecualian subkelas yang lebih khusus juga.

Amalan Terbaik: Pernyataan kenaikan pangkat

Gunakan pernyataan kenaikan pangkat dengan pembina Pengecualian yang paling spesifik yang sesuai dengan keadaan anda. Anda juga boleh menyampaikan argumen kepada pembina:

raise ValueError('A very specific bad thing happened', 'foo', 'bar', 'baz')

Argumen ini boleh diambil menggunakan atribut args objek Pengecualian.

Amalan Terbaik: Klausa kecuali

Apabila mengendalikan pengecualian, anda mungkin ingin merekodkan ralat tertentu dan meningkatkannya semula. Kekalkan surih tindanan dengan menggunakan pernyataan naikkan kosong:

logger = logging.getLogger(__name__)

try:
    do_something_in_app_that_breaks_easily()
except AppError as error:
    logger.error(error)
    raise  # just this!
    # raise AppError  # Don't do this, you'll lose the stack trace!

Mengubah Suai Ralat: Berhati-hati

Walaupun boleh mengubah suai ralat menggunakan sys.exc_info(), lebih suka kenaikan kosong untuk mengekalkan jejak timbunan. Ini boleh menjadi masalah terutamanya apabila menggunakan benang, kerana anda mungkin menangkap jejak balik yang salah.

Perantaian Pengecualian (Python 3 Sahaja)

Dalam Python 3, anda boleh merantai pengecualian untuk mengekalkan jejak balik:

raise RuntimeError('specific message') from error

Kaedah Tidak Digunapakai

Elakkan perkara berikut yang boleh menangkap dan menyembunyikan ralat secara senyap atau bahkan menimbulkan pengecualian yang salah secara senyap:

raise ValueError, 'message'  # Deprecated
raise 'message'  # Seriously wrong, don't do this

Contoh Penggunaan

Contoh menaikkan pengecualian untuk penggunaan API yang salah:

def api_func(foo):
    '''foo should be either 'baz' or 'bar'. returns something very useful.'''
    if foo not in _ALLOWED_ARGS:
        raise ValueError('{foo} wrong, use "baz" or "bar"'.format(foo=repr(foo)))

Mencipta Jenis Ralat Tersuai

Anda boleh menentukan jenis ralat tersuai untuk menunjukkan berkaitan aplikasi tertentu ralat:

class MyAppLookupError(LookupError):
    '''raise this when there's a lookup error for my app'''

Atas ialah kandungan terperinci Bagaimanakah Saya Meningkatkan Pengecualian dengan Berkesan dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dalam Tindakan: Contoh dunia nyataPython dalam Tindakan: Contoh dunia nyataApr 18, 2025 am 12:18 AM

Aplikasi dunia sebenar Python termasuk analisis data, pembangunan web, kecerdasan buatan dan automasi. 1) Dalam analisis data, Python menggunakan panda dan matplotlib untuk memproses dan memvisualisasikan data. 2) Dalam pembangunan web, kerangka Django dan Flask memudahkan penciptaan aplikasi web. 3) Dalam bidang kecerdasan buatan, tensorflow dan pytorch digunakan untuk membina dan melatih model. 4) Dari segi automasi, skrip python boleh digunakan untuk tugas -tugas seperti menyalin fail.

Penggunaan Utama Python: Gambaran Keseluruhan KomprehensifPenggunaan Utama Python: Gambaran Keseluruhan KomprehensifApr 18, 2025 am 12:18 AM

Python digunakan secara meluas dalam bidang sains data, pembangunan web dan bidang skrip automasi. 1) Dalam sains data, Python memudahkan pemprosesan dan analisis data melalui perpustakaan seperti numpy dan panda. 2) Dalam pembangunan web, rangka kerja Django dan Flask membolehkan pemaju dengan cepat membina aplikasi. 3) Dalam skrip automatik, kesederhanaan Python dan perpustakaan standard menjadikannya ideal.

Tujuan utama python: fleksibiliti dan kemudahan penggunaanTujuan utama python: fleksibiliti dan kemudahan penggunaanApr 17, 2025 am 12:14 AM

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python: Kekuatan pengaturcaraan serba bolehPython: Kekuatan pengaturcaraan serba bolehApr 17, 2025 am 12:09 AM

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Belajar python dalam 2 jam sehari: panduan praktikalBelajar python dalam 2 jam sehari: panduan praktikalApr 17, 2025 am 12:05 AM

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

MantisBT

MantisBT

Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan