Rumah >pembangunan bahagian belakang >Tutorial Python >Bagaimana untuk Menyimpan dan Memulihkan Model Terlatih dengan Berkesan dalam TensorFlow?
Menyimpan dan Memulihkan Model Terlatih dalam Tensorflow
Selepas melatih model dalam Tensorflow, memelihara dan menggunakannya semula adalah penting. Begini cara mengendalikan storan model dengan berkesan:
Menyimpan Model Terlatih (Tensorflow versi 0.11 dan ke atas):
Contoh Kod:
import tensorflow as tf # Prepare input placeholders w1 = tf.placeholder("float", name="w1") w2 = tf.placeholder("float", name="w2") # Define test operation w3 = tf.add(w1, w2) w4 = tf.multiply(w3, tf.Variable(2.0, name="bias"), name="op_to_restore") # Initialize variables and run session sess = tf.Session() sess.run(tf.global_variables_initializer()) # Create saver object saver = tf.train.Saver() # Save the model saver.save(sess, 'my_test_model', global_step=1000)
Memulihkan Model yang Disimpan:
Kod Contoh:
# Restore model saver = tf.train.import_meta_graph('my_test_model-1000.meta') saver.restore(sess, tf.train.latest_checkpoint('./')) # Get placeholders and feed data w1 = sess.graph.get_tensor_by_name("w1:0") w2 = sess.graph.get_tensor_by_name("w2:0") feed_dict = {w1: 13.0, w2: 17.0} # Run saved operation op_to_restore = sess.graph.get_tensor_by_name("op_to_restore:0") result = sess.run(op_to_restore, feed_dict)
Atas ialah kandungan terperinci Bagaimana untuk Menyimpan dan Memulihkan Model Terlatih dengan Berkesan dalam TensorFlow?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!