


Membina Pandas DataFrames daripada Item Kamus Bersarang
Diberikan kamus bersarang dengan struktur yang menampilkan UserId sebagai peringkat teratas, Kategori sebagai yang kedua tahap, dan pelbagai atribut sebagai tahap ketiga, matlamatnya adalah untuk mencipta DataFrame panda dengan indeks hierarki. Setiap UserID harus muncul sebagai nilai indeks, manakala Kategori dan nilai atribut membentuk nama lajur.
Percubaan konvensional untuk membina DataFrame daripada kamus sedemikian boleh mengakibatkan indeks dan penetapan lajur yang salah. Untuk menangani perkara ini, pertimbangkan pendekatan berikut:
1. Membentuk Semula Kamus:
Satu penyelesaian melibatkan pembentukan semula kamus ke dalam format yang kekunci adalah tupel mewakili MultiIndex yang dikehendaki. Ini membenarkan penggunaan pd.DataFrame.from_dict dengan orient='index':
user_dict = { 12: {'Category 1': {'att_1': 1, 'att_2': 'whatever'}, 'Category 2': {'att_1': 23, 'att_2': 'another'}}, 15: {'Category 1': {'att_1': 10, 'att_2': 'foo'}, 'Category 2': {'att_1': 30, 'att_2': 'bar'}} } df = pd.DataFrame.from_dict({(i,j): user_dict[i][j] for i in user_dict.keys() for j in user_dict[i].keys()}, orient='index')
2. Menggabungkan DataFrames:
Sebagai alternatif, seseorang boleh membina DataFrame dengan membina kerangka data individu untuk setiap kategori dan pengguna, kemudian menggabungkannya:
user_ids = [] frames = [] for user_id, d in user_dict.iteritems(): user_ids.append(user_id) frames.append(pd.DataFrame.from_dict(d, orient='index')) df = pd.concat(frames, keys=user_ids)
Kedua-dua pendekatan menghasilkan DataFrame dengan yang dikehendaki indeks hierarki dan struktur lajur:
att_1 att_2 12 Category 1 1 whatever Category 2 23 another 15 Category 1 10 foo Category 2 30 bar
Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Mencipta Pandas DataFrame dengan Cekap daripada Kamus Bersarang dengan Data Hierarki?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Pythonlistsareimplementedasdynamicarrays, notlinkedlists.1) thearestoredincontiguousmemoryblocks, yangMayrequireReAllocationWhenAppendingItems, ImpactingPormance.2) LinkedListSwouldOfferefficientInsertions/DeletionsButsCoweCcess

PythonoffersfourmainmethodstoremoveelementsFromalist: 1) Keluarkan (nilai) RemoveStHefirStoccurrenceFavalue, 2) Pop (index) RemoveRandReturnSanelementAtaspeciedIndex, 3)

Ralat toresolvea "kebenaran" yang mana -mana, berikut: 1) checkandadjustthescript'spermissionsingchmod xmyscript.shtomakeitexecutable.2) EnsurethescriptislocatedInadirectoryHeryouhaveVerPiSs, suchasyoursory, suchasyourshy, suchasyourperhysh, suchasyourshy.

ArraysarecrucialinpythonimageProcessingastheyenableefficientmanipulationandanalysisysysyisfimagedata.1) imagesareconvertedtonumpyarrays, walikasicaleimagesas2darraysandcolorimagesas3darrays.2) ArraysAllowForveSbeBerat

ArraysaresinicantantlyfasterthanlistsforoperationsbenefitingFromDirectMemoryAccessandFixed-Sizestructures.1) AccessingingElements: arraysprovideConstant-timeaccessduetocontiguousmemoryStorage.2)

ArraysareBetterforelement-wiseoperationsduetofasteraccessandoptimizedImplementations.1) arrayshavecontiguousmemoryfordirectaccess, enhancingperformance.2) listsareflexibleButslowerduetopotentiahyiLys.3)

Operasi matematik keseluruhan array di Numpy dapat dilaksanakan dengan cekap melalui operasi vektor. 1) Gunakan pengendali mudah seperti tambahan (ARR 2) untuk melaksanakan operasi pada tatasusunan. 2) Numpy menggunakan perpustakaan bahasa C yang mendasari, yang meningkatkan kelajuan pengkomputeran. 3) Anda boleh melakukan operasi kompleks seperti pendaraban, pembahagian, dan eksponen. 4) Perhatikan operasi penyiaran untuk memastikan bahawa bentuk array bersesuaian. 5) Menggunakan fungsi numpy seperti np.sum () dapat meningkatkan prestasi dengan ketara.

Di Python, terdapat dua kaedah utama untuk memasukkan elemen ke dalam senarai: 1) Menggunakan kaedah memasukkan (indeks, nilai), anda boleh memasukkan elemen pada indeks yang ditentukan, tetapi memasukkan pada permulaan senarai besar tidak cekap; 2) Menggunakan kaedah append (nilai), tambahkan elemen pada akhir senarai, yang sangat berkesan. Untuk senarai besar, disarankan untuk menggunakan append () atau pertimbangkan menggunakan array deque atau numpy untuk mengoptimumkan prestasi.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Dreamweaver Mac版
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).
