


Memahami itertools.groupby() untuk Mengelompokkan Data
Fungsi itertools.groupby() Python ialah alat yang berkuasa untuk mengumpulkan data berdasarkan kriteria tertentu. Walaupun dokumentasi menyediakan beberapa maklumat asas, ia boleh menjadi mencabar untuk memahami aplikasi praktikalnya. Untuk menjelaskan penggunaannya, mari fokus pada senario biasa: menyusun senarai objek ke dalam kumpulan berdasarkan atributnya.
Langkah 1: Memahami Fungsi Utama
Kunci untuk menggunakan groupby() terletak pada pemahaman fungsi utama. Fungsi kunci ialah fungsi yang menerima nilai input dan mengembalikan kunci kumpulan. Sebagai contoh, untuk mengumpulkan senarai elemen kanak-kanak berdasarkan atribut nama mereka, anda akan mentakrifkan fungsi utama seperti:
def get_child_name(child): return child.attrib['name']
Langkah 2: Mengumpulkan Data
Dengan fungsi kekunci yang ditakrifkan, anda boleh menggunakannya dengan groupby():
from itertools import groupby children = lxml_element.iterchildren() children_by_name = groupby(children, get_child_name)
Operasi ini mengembalikan iterator (kunci, kumpulan) berpasangan, di mana:
- kunci ialah kunci kumpulan (cth., nama kanak-kanak)
- kumpulan ialah lelaran untuk kumpulan kanak-kanak dengan nama itu
Langkah 3: Mengulangi Kumpulan
Untuk mengulangi setiap kumpulan secara individu, anda boleh menyusun dua gelung:
for name, group in children_by_name: for child in group: # Perform operations on children within the group
Pertimbangan Tambahan:
- Untuk fungsi kekunci yang mengembalikan kekunci bukan unik, gunakan pemahaman senarai untuk kumpulkan nilai dalam setiap kumpulan.
- Isih data terlebih dahulu mungkin perlu jika kriteria pengelompokan bergantung pada susunan elemen.
- Teroka teknik lain seperti koleksi.Counter atau itertools.chain untuk senario kumpulan tertentu.
Atas ialah kandungan terperinci Bagaimanakah `itertools.groupby()` Python Boleh Mengumpul Data Berdasarkan Atribut dengan Cekap?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Tutorial ini menunjukkan cara menggunakan Python untuk memproses konsep statistik undang -undang ZIPF dan menunjukkan kecekapan membaca dan menyusun fail teks besar Python semasa memproses undang -undang. Anda mungkin tertanya -tanya apa maksud pengedaran ZIPF istilah. Untuk memahami istilah ini, kita perlu menentukan undang -undang Zipf. Jangan risau, saya akan cuba memudahkan arahan. Undang -undang Zipf Undang -undang Zipf hanya bermaksud: Dalam korpus bahasa semulajadi yang besar, kata -kata yang paling kerap berlaku muncul kira -kira dua kali lebih kerap sebagai kata -kata kerap kedua, tiga kali sebagai kata -kata kerap ketiga, empat kali sebagai kata -kata kerap keempat, dan sebagainya. Mari kita lihat contoh. Jika anda melihat corpus coklat dalam bahasa Inggeris Amerika, anda akan melihat bahawa perkataan yang paling kerap adalah "th

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Berurusan dengan imej yang bising adalah masalah biasa, terutamanya dengan telefon bimbit atau foto kamera resolusi rendah. Tutorial ini meneroka teknik penapisan imej di Python menggunakan OpenCV untuk menangani isu ini. Penapisan Imej: Alat yang berkuasa Penapis Imej

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Python, kegemaran sains dan pemprosesan data, menawarkan ekosistem yang kaya untuk pengkomputeran berprestasi tinggi. Walau bagaimanapun, pengaturcaraan selari dalam Python memberikan cabaran yang unik. Tutorial ini meneroka cabaran -cabaran ini, memberi tumpuan kepada Interprete Global

Tutorial ini menunjukkan mewujudkan struktur data saluran paip tersuai di Python 3, memanfaatkan kelas dan pengendali yang berlebihan untuk fungsi yang dipertingkatkan. Fleksibiliti saluran paip terletak pada keupayaannya untuk menggunakan siri fungsi ke set data, GE

Serialization dan deserialization objek Python adalah aspek utama dari mana-mana program bukan remeh. Jika anda menyimpan sesuatu ke fail python, anda melakukan siri objek dan deserialization jika anda membaca fail konfigurasi, atau jika anda menjawab permintaan HTTP. Dalam erti kata, siri dan deserialization adalah perkara yang paling membosankan di dunia. Siapa yang peduli dengan semua format dan protokol ini? Anda mahu berterusan atau mengalirkan beberapa objek python dan mengambilnya sepenuhnya pada masa yang akan datang. Ini adalah cara yang baik untuk melihat dunia pada tahap konseptual. Walau bagaimanapun, pada tahap praktikal, skim siri, format atau protokol yang anda pilih boleh menentukan kelajuan, keselamatan, kebebasan status penyelenggaraan, dan aspek lain dari program

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

Dreamweaver Mac版
Alat pembangunan web visual

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa
