cari
Rumahpembangunan bahagian belakangTutorial PythonApakah Cara Paling Cekap untuk Memetakan Fungsi Berbanding Tatasusunan NumPy?

What's the Most Efficient Way to Map Functions Over NumPy Arrays?

Menerokai Pemetaan Tatasusunan Cekap dalam NumPy

Dalam perbincangan ini, kita menyelidiki kaedah yang paling berkesan untuk memetakan fungsi melalui tatasusunan NumPy. Satu pendekatan biasa melibatkan penggunaan pemahaman senarai diikuti dengan penukaran kembali kepada tatasusunan NumPy:

import numpy as np 

x = np.array([1, 2, 3, 4, 5])
squarer = lambda t: t ** 2
squares = np.array([squarer(xi) for xi in x])

Walau bagaimanapun, pendekatan ini mungkin menunjukkan ketidakcekapan disebabkan penciptaan dan penukaran senarai Python perantaraan. Mari kita terokai kaedah alternatif yang berpotensi menawarkan prestasi yang lebih baik.

Memanfaatkan Fungsi NumPy Asli

Jika fungsi sasaran sudah dilaksanakan dalam NumPy, adalah optimum untuk menggunakannya secara langsung, sebagai ditunjukkan oleh:

x ** 2

Pendekatan ini jauh lebih pantas daripada kaedah lain kerana pengoptimuman yang wujud bagi fungsi asli NumPy.

Fungsi Penvektoran

Apabila fungsi yang diingini bukan asli kepada NumPy, vektorisasi ialah teknik berkuasa yang membolehkan aplikasi elemen fungsi -bijak kepada tatasusunan. Ini boleh dicapai menggunakan:

vf = np.vectorize(f)
vf(x)

Pendekatan ini menawarkan pelaksanaan yang cekap untuk operasi vektor.

Menggunakan fromiter()

The fromiter() fungsi boleh digunakan untuk mencipta iterator yang menjana elemen berdasarkan fungsi dan tatasusunan yang disediakan nilai:

np.fromiter((f(xi) for xi in x), x.dtype)

Pendekatan ini amat sesuai untuk menjana elemen tatasusunan tersuai daripada iterator.

Perbandingan Prestasi

Ujian empirikal mendedahkan prestasi yang ketara perbezaan antara pelbagai kaedah pemetaan. Jika fungsi divektorkan dalam NumPy, penggunaan langsung fungsi itu tiada tandingan dari segi kelajuan. Untuk fungsi tersuai, vektorisasi atau fromiter() selalunya memberikan kelebihan yang besar berbanding kaedah berasaskan pemahaman senarai.

Kesimpulan

Pendekatan paling berkesan untuk memetakan fungsi berbanding tatasusunan NumPy bergantung pada fungsi tertentu dan ciri data. Jika boleh, memanfaatkan fungsi NumPy asli amat disyorkan. Vektorisasi dan fromiter() menawarkan alternatif yang cekap untuk fungsi tersuai. Ujian prestasi adalah penting untuk menentukan kaedah optimum untuk senario tertentu.

Atas ialah kandungan terperinci Apakah Cara Paling Cekap untuk Memetakan Fungsi Berbanding Tatasusunan NumPy?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python: pengkompil atau penterjemah?Python: pengkompil atau penterjemah?May 13, 2025 am 12:10 AM

Python adalah bahasa yang ditafsirkan, tetapi ia juga termasuk proses penyusunan. 1) Kod python pertama kali disusun ke dalam bytecode. 2) Bytecode ditafsirkan dan dilaksanakan oleh mesin maya Python. 3) Mekanisme hibrid ini menjadikan python fleksibel dan cekap, tetapi tidak secepat bahasa yang disusun sepenuhnya.

Python untuk gelung vs semasa gelung: Bila menggunakan yang mana?Python untuk gelung vs semasa gelung: Bila menggunakan yang mana?May 13, 2025 am 12:07 AM

UseAforLoopWheniteratingOvereForforpecificNumbimes; Useaphileloopwhencontinuinguntilaconditionismet.forloopsareidealforknownownsequences, sementara yang tidak digunakan.

Gelung Python: Kesalahan yang paling biasaGelung Python: Kesalahan yang paling biasaMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops, pengubahsuaianListsduringiteration, off-by-oneerrors, sifar-indexingissues, andnestedloopinefficies.toavoidthese: 1) use'i

Untuk gelung dan semasa gelung di Python: Apakah kelebihan masing -masing?Untuk gelung dan semasa gelung di Python: Apakah kelebihan masing -masing?May 13, 2025 am 12:01 AM

Forloopsareadvantageousforknowniterationsationship, menawarkanMenghentianmentability, whileopsareidealfordynamicconditionsandunknowniterations, providingcontrolovertermination.1) forloopsareperfectfectfectfectfectfectfectoVeratingOverlists, tuples, orstrings, secara langsung

Python: menyelam mendalam ke dalam kompilasi dan tafsiranPython: menyelam mendalam ke dalam kompilasi dan tafsiranMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation: 1) thepythoninterpretercompilessourcodcecodeintoplatform-independentbytecode.2) thepythonvirtualmachine (PVM) thenexecutesthisbytecode, BalantingeaseOfusoWithperformance.

Adakah Python diterjemahkan atau bahasa yang disusun, dan mengapa ia penting?Adakah Python diterjemahkan atau bahasa yang disusun, dan mengapa ia penting?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandandcompiled.1) it'scompiledtobytecodeforporabilityAcrossplatforms.2) theBytecodeistheninterpreted, membolehkanfordynamictypingandrapiddevelopment, walaupunItmayBeslowerLowerWanLelyCiledlanguages.

Untuk gelung vs semasa gelung di python: perbezaan utama dijelaskanUntuk gelung vs semasa gelung di python: perbezaan utama dijelaskanMay 12, 2025 am 12:08 AM

ForloopsareidealwhenyonesshenumberofiterationsationseSinadvance, whilewhileloopsarebetterforsituationshipheryouneedtoloopuntilaconditionismet.forloopsaremoreeficientablyandable, yang sesuai, manakala whileloopsoffermorecontrolandareusefereficeficeficeficeficient,

Untuk dan semasa gelung: panduan praktikalUntuk dan semasa gelung: panduan praktikalMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance, whilewhileloopsareusedwhenTheiterationsdependonacondition.1) forloopsareidealforiteratingoversequencesLikeListsorArrays.2)

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Nordhold: Sistem Fusion, dijelaskan
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.